In this paper we study second order sufficient conditions for the strong-local optimality of singular Pontryagin extremals. In particular, we focus on the minimum-time problem for a control-affine system with vector inputs. We use Hamiltonian methods to prove that the coercivity of a suitably-defined second variation - plus an involutivity assumption on the distribution of the controlled fields - is a sufficient condition for the strong optimality of a candidate extremal.

SINGULAR EXTREMALS IN MULTI-INPUT TIME-OPTIMAL PROBLEMS: ASUFFICIENT CONDITION / F. C. CHITTARO ; G . STEFANI. - In: CONTROL AND CYBERNETICS. - ISSN 0324-8569. - STAMPA. - vol.39 n.4:(2010), pp. 1029-1068.

SINGULAR EXTREMALS IN MULTI-INPUT TIME-OPTIMAL PROBLEMS: ASUFFICIENT CONDITION

STEFANI, GIANNA
2010

Abstract

In this paper we study second order sufficient conditions for the strong-local optimality of singular Pontryagin extremals. In particular, we focus on the minimum-time problem for a control-affine system with vector inputs. We use Hamiltonian methods to prove that the coercivity of a suitably-defined second variation - plus an involutivity assumption on the distribution of the controlled fields - is a sufficient condition for the strong optimality of a candidate extremal.
2010
vol.39 n.4
1029
1068
F. C. CHITTARO ; G . STEFANI
File in questo prodotto:
File Dimensione Formato  
AbstractAnvur.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 57.14 kB
Formato Adobe PDF
57.14 kB Adobe PDF   Richiedi una copia
chittaro-stefani.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 364.46 kB
Formato Adobe PDF
364.46 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/391969
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact