Abstract. Origami is the ancient Japanese art of folding paper. Even if origami is mainly an artistic product, it has received a great deal of attention from mathematicians, because of its interesting algebraic and geometrical properties. We present a new mathematical model of origami which has a double purpose. In one hand we give an analytical approach which provides a new perspective to the existing algebraic and geometrical models. In the other hand we use origami as a tool to exhibit explicit solutions to some systems of partial differential equations.

Origami and Partial Differential Equations / B. Dacorogna; P. Marcellini; E. Paolini. - In: NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9920. - STAMPA. - 57:(2010), pp. 598-606.

Origami and Partial Differential Equations

MARCELLINI, PAOLO;PAOLINI, EMANUELE
2010

Abstract

Abstract. Origami is the ancient Japanese art of folding paper. Even if origami is mainly an artistic product, it has received a great deal of attention from mathematicians, because of its interesting algebraic and geometrical properties. We present a new mathematical model of origami which has a double purpose. In one hand we give an analytical approach which provides a new perspective to the existing algebraic and geometrical models. In the other hand we use origami as a tool to exhibit explicit solutions to some systems of partial differential equations.
2010
57
598
606
B. Dacorogna; P. Marcellini; E. Paolini
File in questo prodotto:
File Dimensione Formato  
201005-about-the-cover.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 216.78 kB
Formato Adobe PDF
216.78 kB Adobe PDF   Richiedi una copia
DacMarPao10b.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 718.5 kB
Formato Adobe PDF
718.5 kB Adobe PDF   Richiedi una copia
201005_AMS_cover.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/392403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact