Malformations of cortical development are often accompanied by an abnormal cortical pattern. Due to its propensity to involve discrete cortical areas, polymicrogyria represents an interesting model for assessing the reorganization of cortical function in relation to the disrupted anatomy. Functional MRI, TMS and SEPs can provide a highly complementary, multimodal approach to map noninvasively the functional rearrangement of sensorimotor functions in the polymicrogyric cortex, and to obtain a coherent modelling. We report here an illustrative case which is included in a patients series under study using a block design 3T fMRI, short-latency SEPs as identified on the basis of their latency, polarity, and scalp distribution and an assessment of the area and volume of the motor maps and the relative position of the center of gravity and hot spot.A 15 years old girl, with drug-resistant epilepsy and left perisylvian polymicrogyria that was part of a large epileptogenic network including also the mesial aspect of the left frontal lobe, exhibited a normal distribution of somatomotor responses in the expected anatomic sites, with a dissociation between motor functions, which were slightly impaired in the malformed hemisphere, and bilaterally normal sensory responses. In this patient, a large resection of epileptogenic zone, sparing eloquent areas as previously identified, should be planned in order to improve seizure outcome.An integrated fMRI, TMS and SEP mapping approach helps defining the relationship between epileptogenic zones and somatomotor areas. Studies of greater number of patients will be necessary in order to identify the general rules that determine the functional representation in the malformed cortex.
An integrated fMRI, SEPs and MEPs approach for assessing functional organization in the malformed sensorimotor cortex / Barba C; Montanaro D; Cincotta M; Giovannelli F; Guerrini R.. - In: EPILEPSY RESEARCH. - ISSN 0920-1211. - STAMPA. - 89 (1),:(2010), pp. 66-71. [10.1016/j.eplepsyres.2009.12.008]
An integrated fMRI, SEPs and MEPs approach for assessing functional organization in the malformed sensorimotor cortex.
Barba C;GIOVANNELLI, FABIO;GUERRINI, RENZO
2010
Abstract
Malformations of cortical development are often accompanied by an abnormal cortical pattern. Due to its propensity to involve discrete cortical areas, polymicrogyria represents an interesting model for assessing the reorganization of cortical function in relation to the disrupted anatomy. Functional MRI, TMS and SEPs can provide a highly complementary, multimodal approach to map noninvasively the functional rearrangement of sensorimotor functions in the polymicrogyric cortex, and to obtain a coherent modelling. We report here an illustrative case which is included in a patients series under study using a block design 3T fMRI, short-latency SEPs as identified on the basis of their latency, polarity, and scalp distribution and an assessment of the area and volume of the motor maps and the relative position of the center of gravity and hot spot.A 15 years old girl, with drug-resistant epilepsy and left perisylvian polymicrogyria that was part of a large epileptogenic network including also the mesial aspect of the left frontal lobe, exhibited a normal distribution of somatomotor responses in the expected anatomic sites, with a dissociation between motor functions, which were slightly impaired in the malformed hemisphere, and bilaterally normal sensory responses. In this patient, a large resection of epileptogenic zone, sparing eloquent areas as previously identified, should be planned in order to improve seizure outcome.An integrated fMRI, TMS and SEP mapping approach helps defining the relationship between epileptogenic zones and somatomotor areas. Studies of greater number of patients will be necessary in order to identify the general rules that determine the functional representation in the malformed cortex.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.