Muroid rodents are composed of a wide range of species characterized by extensive karyotypic evolution. Even if this group includes such important laboratory animal models as domestic mouse (Mus musculus), Norway rat (Rattus norvegicus), Chinese hamster (Cricetulus griseus), and golden hamster (Mesocricetus auratus), comparative cytogenetic studies between rodents are difficult due to the characteristic rapid karyotypic evolution. Molecular cytogenetic methods can help resolve problems of comparing muroid chromosomes. Here, we used cross-species comparative multicolour banding with probes obtained from mouse chromosomes 3, 6, 18, and 19 to study the karyotypes of nine muroid species from the three subfamilies Murinae, Cricetinae, and Arvicolinae. Results from multicolour banding with these murine probes (mcb) allowed us to improve the comparative homology maps between these species and to obtain new insights into their karyotypic evolution. We identified evolutionary conserved chromosomal breakpoints and revealed four previously unrecognized homologous segments, four inversions, and 14 evolutionary new centromeres in the nine muroid species studied. We found Mus apomorphic rearrangements, not seen in other muroids, and defined several subfamily specific chromosome breaks, characteristic for Arvicolinae and Cricetinae. We show that mcb libraries are an effective tool both for the cytogenetic characterisation of important laboratory models such as the rat and hamster as well as elucidating the complex phylogenomics relationships of muroids.

New insights into the karyotypic evolution in muroid rodents revealed by multicolor banding applying murine probes / V.A.Trifonov; N.Kosyakova; S.A.Romanenko; R.Stanyon; A.S.Graphodatsky; T. Liehr. - In: CHROMOSOME RESEARCH. - ISSN 0967-3849. - STAMPA. - 18(2010), pp. 265-275. [10.1007/s10577-010-9110-6]

New insights into the karyotypic evolution in muroid rodents revealed by multicolor banding applying murine probes

STANYON, ROSCOE ROBERT;
2010

Abstract

Muroid rodents are composed of a wide range of species characterized by extensive karyotypic evolution. Even if this group includes such important laboratory animal models as domestic mouse (Mus musculus), Norway rat (Rattus norvegicus), Chinese hamster (Cricetulus griseus), and golden hamster (Mesocricetus auratus), comparative cytogenetic studies between rodents are difficult due to the characteristic rapid karyotypic evolution. Molecular cytogenetic methods can help resolve problems of comparing muroid chromosomes. Here, we used cross-species comparative multicolour banding with probes obtained from mouse chromosomes 3, 6, 18, and 19 to study the karyotypes of nine muroid species from the three subfamilies Murinae, Cricetinae, and Arvicolinae. Results from multicolour banding with these murine probes (mcb) allowed us to improve the comparative homology maps between these species and to obtain new insights into their karyotypic evolution. We identified evolutionary conserved chromosomal breakpoints and revealed four previously unrecognized homologous segments, four inversions, and 14 evolutionary new centromeres in the nine muroid species studied. We found Mus apomorphic rearrangements, not seen in other muroids, and defined several subfamily specific chromosome breaks, characteristic for Arvicolinae and Cricetinae. We show that mcb libraries are an effective tool both for the cytogenetic characterisation of important laboratory models such as the rat and hamster as well as elucidating the complex phylogenomics relationships of muroids.
18
265
275
V.A.Trifonov; N.Kosyakova; S.A.Romanenko; R.Stanyon; A.S.Graphodatsky; T. Liehr
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2158/393349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact