This paper investigates the airflow patterns connected to different cough conditions, the effects of these arrangements on the regions of droplet fallout and dilution time of virus diffusion of coughed gas. We focus on some of the physical processes that occur in a double bed hospital isolation room, investigating the effect of the ventilation system on the spread of particles in air. A cough model was carried out and used for the numerical simulation of virus diffusion inside an existent isolation room. Transient simulations of air pattern diffusion and air velocity field, provided by the existing typical HVAC primary air system designed for infectious patients, were performed using CFD. A multiphysics approach, combined Convection-Conduction, Incompressible Navier-Stokes models on non-isothermal air flow and Convection-Diffusion, was used. Simulations results highlighted that the flow field and velocity distribution induced by the high turbulence air inlet diffuser combined with the air return diffusers produce wide recirculation zones near the wall and partial stagnation areas near the ceiling and between the two beds, but lower particle concentration in the room and their shorter spreading distance. This type of analysis is certainly cost effective to identify all the air recirculation zones which can harbour lingering pathogens.
Modelling infection spreading control in a hospital isolationroom / C.Balocco; P.Liò. - In: JOURNAL OF BIOMEDICAL SCIENCE AND ENGINEERING. - ISSN 1937-6871. - STAMPA. - 3:(2010), pp. 1-11. [10.4236/jbise.2010.37089]
Modelling infection spreading control in a hospital isolationroom
BALOCCO, CARLA;
2010
Abstract
This paper investigates the airflow patterns connected to different cough conditions, the effects of these arrangements on the regions of droplet fallout and dilution time of virus diffusion of coughed gas. We focus on some of the physical processes that occur in a double bed hospital isolation room, investigating the effect of the ventilation system on the spread of particles in air. A cough model was carried out and used for the numerical simulation of virus diffusion inside an existent isolation room. Transient simulations of air pattern diffusion and air velocity field, provided by the existing typical HVAC primary air system designed for infectious patients, were performed using CFD. A multiphysics approach, combined Convection-Conduction, Incompressible Navier-Stokes models on non-isothermal air flow and Convection-Diffusion, was used. Simulations results highlighted that the flow field and velocity distribution induced by the high turbulence air inlet diffuser combined with the air return diffusers produce wide recirculation zones near the wall and partial stagnation areas near the ceiling and between the two beds, but lower particle concentration in the room and their shorter spreading distance. This type of analysis is certainly cost effective to identify all the air recirculation zones which can harbour lingering pathogens.File | Dimensione | Formato | |
---|---|---|---|
Balocco&Liò_2010.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
DRM non definito
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.