Nonlinear charge transport in strongly coupled semiconductor super lattices is described by two-miniband Wigner-Poisson kinetic equations with BGK collision terms. The hyperbolic limit, in which the collision frequencies are of the same order as the Bloch frequencies due to the electric field, is investigated by means of the Chapman-Enskog perturbation technique, leading to nonlinear drift-diffusion equations for the two miniband populations. In the case of a lateral superlattice with spin-orbit interaction, the corresponding drift-diffusion equations are used to calculate spin-polarized currents and electron spin polarization.

Nonlinear electron and spin transport in semiconductor superlattices / L.L. Bonilla; L. Barletti; M. Alvaro. - STAMPA. - (2010), pp. 141-146. (Intervento presentato al convegno ECMI 2008 tenutosi a Londra - University College nel 30 giugno - 4 luglio 2008) [10.1007/978-3-642-12110-4_16].

Nonlinear electron and spin transport in semiconductor superlattices

BARLETTI, LUIGI;
2010

Abstract

Nonlinear charge transport in strongly coupled semiconductor super lattices is described by two-miniband Wigner-Poisson kinetic equations with BGK collision terms. The hyperbolic limit, in which the collision frequencies are of the same order as the Bloch frequencies due to the electric field, is investigated by means of the Chapman-Enskog perturbation technique, leading to nonlinear drift-diffusion equations for the two miniband populations. In the case of a lateral superlattice with spin-orbit interaction, the corresponding drift-diffusion equations are used to calculate spin-polarized currents and electron spin polarization.
2010
PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008
ECMI 2008
Londra - University College
30 giugno - 4 luglio 2008
L.L. Bonilla; L. Barletti; M. Alvaro
File in questo prodotto:
File Dimensione Formato  
BonillaBarlettiAlvaro.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 109.83 kB
Formato Adobe PDF
109.83 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/394313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact