Two bean cultivars with different sensitivity to ozone, i.e. the O3-sensitive Cannellino and the O3-tolerant Top Crop, were exposed to acute O3-stress (165 nL L1) with the aim of evaluating physiological and biochemical traits that may confer O3-tolerance. Stomatal conductance was smaller and the ability to dissipate excess energy, via regulated and unregulated nonphotochemical quenching mechanisms was greater in Top Crop than in Cannellino. These morphological and physiological-traits allowed the O3-tolerant cultivar to compensate for the light-induced declines in FPSII, to preserve photosystem II from excitation-energy, and likely to prevent the generation of ROS to a superior degree than the O3-sensitive cultivar. Furthermore, the potential capacities to reducing the superoxide anion and H2O2 were significantly greater in Top Crop than in Cannellino. These findings are consistent with the early accumulation of H2O2, the almost complete disruption of cell structure, and irreversible damages to the photosynthetic apparatus observed in the O3-sensitive cultivar.

Ozone tolerance in Phaseolus vulgaris depends on more than one mechanism / L. Guidi; E. Degl’Innocenti; C. Giordano; S. Biricolti; M. Tattini. - In: ENVIRONMENTAL POLLUTION. - ISSN 0269-7491. - STAMPA. - 158:(2010), pp. 3164-3171. [10.1016/j.envpol.2010.06.037]

Ozone tolerance in Phaseolus vulgaris depends on more than one mechanism

BIRICOLTI, STEFANO;
2010

Abstract

Two bean cultivars with different sensitivity to ozone, i.e. the O3-sensitive Cannellino and the O3-tolerant Top Crop, were exposed to acute O3-stress (165 nL L1) with the aim of evaluating physiological and biochemical traits that may confer O3-tolerance. Stomatal conductance was smaller and the ability to dissipate excess energy, via regulated and unregulated nonphotochemical quenching mechanisms was greater in Top Crop than in Cannellino. These morphological and physiological-traits allowed the O3-tolerant cultivar to compensate for the light-induced declines in FPSII, to preserve photosystem II from excitation-energy, and likely to prevent the generation of ROS to a superior degree than the O3-sensitive cultivar. Furthermore, the potential capacities to reducing the superoxide anion and H2O2 were significantly greater in Top Crop than in Cannellino. These findings are consistent with the early accumulation of H2O2, the almost complete disruption of cell structure, and irreversible damages to the photosynthetic apparatus observed in the O3-sensitive cultivar.
2010
158
3164
3171
L. Guidi; E. Degl’Innocenti; C. Giordano; S. Biricolti; M. Tattini
File in questo prodotto:
File Dimensione Formato  
Guidi et al. 2010.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/394525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact