In the retina, dopamine fulfills a crucial role in neural adaptation to photopic illumination, but the pathway that carries cone signals to the dopaminergic amacrine (DA) cells was controversial. We identified the site of ON-cone bipolar input onto DA cells in transgenic mice in which both types of catecholaminergic amacrine (CA) cells were labeled with green fluorescent protein or human placental alkaline phosphatase (PLAP). In confocal Z series of retinal whole mounts stained with antibodies to tyrosine hydroxylase (TH), DA cells gave rise to varicose processes that descended obliquely through the scleral half of the inner plexiform layer (IPL) and formed a loose, tangential plexus in the middle of this layer. Comparison with the distribution of the dendrites of type 2 CA cells and examination of neurobiotin-injected DA cells proved that their vitreal processes were situated in stratum S3 of the IPL. Electron microscope demonstration of PLAP activity showed that bipolar cell endings in S3 established ribbon synapses onto a postsynaptic dyad in which one or both processes were labeled by a precipitate of lead phosphate and therefore belonged to DA cells. In places, the postsynaptic DA cell processes returned a reciprocal synapse onto the bipolar endings. Confocal images of sections stained with antibodies to TH, kinesin Kif3a, which labels synaptic ribbons, and glutamate or GABA(A) receptors, confirmed that ribbon-containing endings made glutamatergic synapses onto DA cells processes in S3 and received from them GABAergic synapses. The presynaptic ON-bipolar cells most likely belonged to the CB3 (type 5) variety. (c) 2010 Wiley-Liss, Inc.

Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retina / Contini M; Lin B; Kobayashi K; Okano H; Masland RH; Raviola E.. - In: JOURNAL OF COMPARATIVE NEUROLOGY. - ISSN 1096-9861. - STAMPA. - 1;518(11):2035-50.:(2010), pp. 0-0.

Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retina.

CONTINI, MASSIMO;
2010

Abstract

In the retina, dopamine fulfills a crucial role in neural adaptation to photopic illumination, but the pathway that carries cone signals to the dopaminergic amacrine (DA) cells was controversial. We identified the site of ON-cone bipolar input onto DA cells in transgenic mice in which both types of catecholaminergic amacrine (CA) cells were labeled with green fluorescent protein or human placental alkaline phosphatase (PLAP). In confocal Z series of retinal whole mounts stained with antibodies to tyrosine hydroxylase (TH), DA cells gave rise to varicose processes that descended obliquely through the scleral half of the inner plexiform layer (IPL) and formed a loose, tangential plexus in the middle of this layer. Comparison with the distribution of the dendrites of type 2 CA cells and examination of neurobiotin-injected DA cells proved that their vitreal processes were situated in stratum S3 of the IPL. Electron microscope demonstration of PLAP activity showed that bipolar cell endings in S3 established ribbon synapses onto a postsynaptic dyad in which one or both processes were labeled by a precipitate of lead phosphate and therefore belonged to DA cells. In places, the postsynaptic DA cell processes returned a reciprocal synapse onto the bipolar endings. Confocal images of sections stained with antibodies to TH, kinesin Kif3a, which labels synaptic ribbons, and glutamate or GABA(A) receptors, confirmed that ribbon-containing endings made glutamatergic synapses onto DA cells processes in S3 and received from them GABAergic synapses. The presynaptic ON-bipolar cells most likely belonged to the CB3 (type 5) variety. (c) 2010 Wiley-Liss, Inc.
2010
1;518(11):2035-50.
0
0
Contini M; Lin B; Kobayashi K; Okano H; Masland RH; Raviola E.
File in questo prodotto:
File Dimensione Formato  
Contini et al 2010.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/394623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
social impact