We consider the existence of ground states for the problem Delta u + K(\x\)U-(n+2/(n-2)) = 0 where K(\x\) is a positive, bounded, continuous function. We use dynamical systems methods, especially the method of the Melnikov function to find conditions under which this problem admits a ground state or a singular ground state. The sensitivity of positive solutions depending on K(\x\) is discussed for non-monotone K.

Melnikov method and elliptic equations with critical exponent / R. Johnson; X.-B. Pan; Y.-F. Yi. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 43:(1994), pp. 1045-1077. [10.1512/iumj.1994.43.43046]

Melnikov method and elliptic equations with critical exponent

JOHNSON, RUSSELL ALLAN;
1994

Abstract

We consider the existence of ground states for the problem Delta u + K(\x\)U-(n+2/(n-2)) = 0 where K(\x\) is a positive, bounded, continuous function. We use dynamical systems methods, especially the method of the Melnikov function to find conditions under which this problem admits a ground state or a singular ground state. The sensitivity of positive solutions depending on K(\x\) is discussed for non-monotone K.
1994
43
1045
1077
R. Johnson; X.-B. Pan; Y.-F. Yi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/395982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 27
social impact