ARF-GTPases are important proteins that control membrane trafficking events. Their activity is largely influenced by the interplay between guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which facilitate the activation or inactivation of ARF-GTPases, respectively. There are 15 predicted proteins that contain an ARF-GAP domain within the Arabidopsis thaliana genome, and these are classified as ARF-GAP domain (AGD) proteins. The function and subcellular distribution of AGDs, including the ability to activate ARF-GTPases in vivo, that remain largely uncharacterized to date. Here we show that AGD5 is localised to the trans-Golgi network (TGN), where it co-localises with ARF1, a crucial GTPase that is involved in membrane trafficking and which was previously shown to be distributed on Golgi and post-Golgi structures of unknown nature. Taking advantage of the in vivo AGD5-ARF1 interaction at the TGN, we show that mutation of an arginine residue that is critical for ARF-GAP activity of AGD5 leads to longer residence of ARF1 on the membranes, as expected if GTP hydrolysis on ARF1 was impaired due to a defective GAP. Our results establish the nature of the post-Golgi compartments in which ARF1 localises, as well as identifying the role of AGD5 in vivo as a TGN-localised GAP. Furthermore, in vitro experiments established the promiscuous interaction between AGD5 and the plasma membrane-localised ADP ribosylation factor B (ARFB), confirming that ARF-GAP specificity for ARF-GTPases within the cell environment may be spatially regulated.

AGD5 is a GTPase-activating protein at the trans-Golgi network / Stefano G.; Renna L.; Rossi M.; Azzarello E.; Pollastri S.; Brandizzi F.; Baluska F.; S.Mancuso. - In: PLANT JOURNAL. - ISSN 1365-313X. - STAMPA. - 64:(2010), pp. 790-799. [10.1111/j.1365-313X.2010.04369.x]

AGD5 is a GTPase-activating protein at the trans-Golgi network

Stefano G.;AZZARELLO, ELISA;POLLASTRI, SUSANNA;MANCUSO, STEFANO
2010

Abstract

ARF-GTPases are important proteins that control membrane trafficking events. Their activity is largely influenced by the interplay between guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which facilitate the activation or inactivation of ARF-GTPases, respectively. There are 15 predicted proteins that contain an ARF-GAP domain within the Arabidopsis thaliana genome, and these are classified as ARF-GAP domain (AGD) proteins. The function and subcellular distribution of AGDs, including the ability to activate ARF-GTPases in vivo, that remain largely uncharacterized to date. Here we show that AGD5 is localised to the trans-Golgi network (TGN), where it co-localises with ARF1, a crucial GTPase that is involved in membrane trafficking and which was previously shown to be distributed on Golgi and post-Golgi structures of unknown nature. Taking advantage of the in vivo AGD5-ARF1 interaction at the TGN, we show that mutation of an arginine residue that is critical for ARF-GAP activity of AGD5 leads to longer residence of ARF1 on the membranes, as expected if GTP hydrolysis on ARF1 was impaired due to a defective GAP. Our results establish the nature of the post-Golgi compartments in which ARF1 localises, as well as identifying the role of AGD5 in vivo as a TGN-localised GAP. Furthermore, in vitro experiments established the promiscuous interaction between AGD5 and the plasma membrane-localised ADP ribosylation factor B (ARFB), confirming that ARF-GAP specificity for ARF-GTPases within the cell environment may be spatially regulated.
2010
64
790
799
Stefano G.; Renna L.; Rossi M.; Azzarello E.; Pollastri S.; Brandizzi F.; Baluska F.; S.Mancuso
File in questo prodotto:
File Dimensione Formato  
Plant J 2010 Stefano.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 655.62 kB
Formato Adobe PDF
655.62 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/399144
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact