ARF-GTPases are important proteins that control membrane trafficking events. Their activity is largely influenced by the interplay between guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which facilitate the activation or inactivation of ARF-GTPases, respectively. There are 15 predicted proteins that contain an ARF-GAP domain within the Arabidopsis thaliana genome, and these are classified as ARF-GAP domain (AGD) proteins. The function and subcellular distribution of AGDs, including the ability to activate ARF-GTPases in vivo, that remain largely uncharacterized to date. Here we show that AGD5 is localised to the trans-Golgi network (TGN), where it co-localises with ARF1, a crucial GTPase that is involved in membrane trafficking and which was previously shown to be distributed on Golgi and post-Golgi structures of unknown nature. Taking advantage of the in vivo AGD5-ARF1 interaction at the TGN, we show that mutation of an arginine residue that is critical for ARF-GAP activity of AGD5 leads to longer residence of ARF1 on the membranes, as expected if GTP hydrolysis on ARF1 was impaired due to a defective GAP. Our results establish the nature of the post-Golgi compartments in which ARF1 localises, as well as identifying the role of AGD5 in vivo as a TGN-localised GAP. Furthermore, in vitro experiments established the promiscuous interaction between AGD5 and the plasma membrane-localised ADP ribosylation factor B (ARFB), confirming that ARF-GAP specificity for ARF-GTPases within the cell environment may be spatially regulated.
AGD5 is a GTPase-activating protein at the trans-Golgi network / Stefano G.; Renna L.; Rossi M.; Azzarello E.; Pollastri S.; Brandizzi F.; Baluska F.; S.Mancuso. - In: PLANT JOURNAL. - ISSN 1365-313X. - STAMPA. - 64:(2010), pp. 790-799. [10.1111/j.1365-313X.2010.04369.x]
AGD5 is a GTPase-activating protein at the trans-Golgi network
Stefano G.;AZZARELLO, ELISA;POLLASTRI, SUSANNA;MANCUSO, STEFANO
2010
Abstract
ARF-GTPases are important proteins that control membrane trafficking events. Their activity is largely influenced by the interplay between guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which facilitate the activation or inactivation of ARF-GTPases, respectively. There are 15 predicted proteins that contain an ARF-GAP domain within the Arabidopsis thaliana genome, and these are classified as ARF-GAP domain (AGD) proteins. The function and subcellular distribution of AGDs, including the ability to activate ARF-GTPases in vivo, that remain largely uncharacterized to date. Here we show that AGD5 is localised to the trans-Golgi network (TGN), where it co-localises with ARF1, a crucial GTPase that is involved in membrane trafficking and which was previously shown to be distributed on Golgi and post-Golgi structures of unknown nature. Taking advantage of the in vivo AGD5-ARF1 interaction at the TGN, we show that mutation of an arginine residue that is critical for ARF-GAP activity of AGD5 leads to longer residence of ARF1 on the membranes, as expected if GTP hydrolysis on ARF1 was impaired due to a defective GAP. Our results establish the nature of the post-Golgi compartments in which ARF1 localises, as well as identifying the role of AGD5 in vivo as a TGN-localised GAP. Furthermore, in vitro experiments established the promiscuous interaction between AGD5 and the plasma membrane-localised ADP ribosylation factor B (ARFB), confirming that ARF-GAP specificity for ARF-GTPases within the cell environment may be spatially regulated.File | Dimensione | Formato | |
---|---|---|---|
Plant J 2010 Stefano.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
655.62 kB
Formato
Adobe PDF
|
655.62 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.