Phaeochromocytomas and paragangliomas (PPGLs) are highly heterogeneous tumours with variable catecholamine biochemical phenotypes and diverse hereditary backgrounds. This analysis of 18 catecholamine-related plasma and urinary biomarkers in 365 patients with PPGLs and 846 subjects without PPGLs examined how catecholamine metabolomic profiles are impacted by hereditary background and relate to variable hormone secretion. Catecholamine secretion was assessed in a subgroup of 156 patients from whom tumour tissue was available for measurements of catecholamine contents. Among all analytes, the free catecholamine O-methylated metabolites measured in plasma showed the largest tumour-related increases relative to the reference group. Patients with tumours due to multiple endocrine neoplasia type 2 and neurofibromatosis type 1 (NF1) showed similar catecholamine metabolite and secretory profiles to patients with adrenaline-producing tumours and no evident hereditary background. Tumours from these three patient groups contained higher contents of catecholamines, but secreted the hormones at lower rates than tumours that did not contain appreciable adrenaline, the latter including PPGLs due to von Hippel-Lindau (VHL) and succinate dehydrogenase (SDH) gene mutations. Large increases of plasma dopamine and its metabolites additionally characterised patients with PPGLs due to the latter mutations, whereas patients with NF1 were characterised by large increases in plasma dihydroxyphenylglycol and dihydroxyphenylacetic acid, the deaminated metabolites of noradrenaline and dopamine. This analysis establishes the utility of comprehensive catecholamine metabolite profiling for characterising the distinct and highly diverse catecholamine metabolomic and secretory phenotypes among different groups of patients with PPGLs. The data further suggest developmental origins of PPGLs from different populations of chromaffin cell progenitors.

Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma / G.Eisenhofer; K.Pacak; T.Huyhn; N.Qin; G.Bratslavsky; WM.Linehan; M.Mannelli; P.Friberg; S.Grebe; H.Timmers; S.Bornstein; JWM.Lenders. - In: ENDOCRINE-RELATED CANCER. - ISSN 1351-0088. - STAMPA. - 18:(2010), pp. 97-111.

Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma.

MANNELLI, MASSIMO;
2010

Abstract

Phaeochromocytomas and paragangliomas (PPGLs) are highly heterogeneous tumours with variable catecholamine biochemical phenotypes and diverse hereditary backgrounds. This analysis of 18 catecholamine-related plasma and urinary biomarkers in 365 patients with PPGLs and 846 subjects without PPGLs examined how catecholamine metabolomic profiles are impacted by hereditary background and relate to variable hormone secretion. Catecholamine secretion was assessed in a subgroup of 156 patients from whom tumour tissue was available for measurements of catecholamine contents. Among all analytes, the free catecholamine O-methylated metabolites measured in plasma showed the largest tumour-related increases relative to the reference group. Patients with tumours due to multiple endocrine neoplasia type 2 and neurofibromatosis type 1 (NF1) showed similar catecholamine metabolite and secretory profiles to patients with adrenaline-producing tumours and no evident hereditary background. Tumours from these three patient groups contained higher contents of catecholamines, but secreted the hormones at lower rates than tumours that did not contain appreciable adrenaline, the latter including PPGLs due to von Hippel-Lindau (VHL) and succinate dehydrogenase (SDH) gene mutations. Large increases of plasma dopamine and its metabolites additionally characterised patients with PPGLs due to the latter mutations, whereas patients with NF1 were characterised by large increases in plasma dihydroxyphenylglycol and dihydroxyphenylacetic acid, the deaminated metabolites of noradrenaline and dopamine. This analysis establishes the utility of comprehensive catecholamine metabolite profiling for characterising the distinct and highly diverse catecholamine metabolomic and secretory phenotypes among different groups of patients with PPGLs. The data further suggest developmental origins of PPGLs from different populations of chromaffin cell progenitors.
2010
18
97
111
G.Eisenhofer; K.Pacak; T.Huyhn; N.Qin; G.Bratslavsky; WM.Linehan; M.Mannelli; P.Friberg; S.Grebe; H.Timmers; S.Bornstein; JWM.Lenders
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/402149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact