A complete multitemporal landslide inventory, ideally updated after each major event, is essential for quantitative landslide hazard assessment. However, traditional mapping methods, which rely on manual interpretation of aerial photographs and intensive field surveys, are time consuming and not efficient for generating such event-based inventories. In this letter, a semi-automatic approach based on object-oriented change detection for landslide rapid mapping and using very high resolution optical images is introduced. The usefulness of this methodology is demonstrated on the Messina landslide event in southern Italy that occurred on October 1, 2009. The algorithm was first developed in a training area of Altolia and subsequently tested without modifications in an independent area of Itala. Correctly detected were 198 newly triggered landslides, with user accuracies of 81.8% for the number of landslides and 75.9% for the extent of landslides. The principal novelties of this letter are as follows: 1) a fully automatic problem-specified multiscale optimization for image segmentation and 2) a multitemporal analysis at object level with several systemized spectral and textural measurements.
Object-oriented change detection for landslide rapid mapping / Lu P.; Stumpf A.; Kerle N.; Casagli N.. - In: IEEE GEOSCIENCE AND REMOTE SENSING LETTERS. - ISSN 1545-598X. - STAMPA. - 8(4):(2011), pp. 701-705. [10.1109/LGRS.2010.2101045]
Object-oriented change detection for landslide rapid mapping
LU, PING;CASAGLI, NICOLA
2011
Abstract
A complete multitemporal landslide inventory, ideally updated after each major event, is essential for quantitative landslide hazard assessment. However, traditional mapping methods, which rely on manual interpretation of aerial photographs and intensive field surveys, are time consuming and not efficient for generating such event-based inventories. In this letter, a semi-automatic approach based on object-oriented change detection for landslide rapid mapping and using very high resolution optical images is introduced. The usefulness of this methodology is demonstrated on the Messina landslide event in southern Italy that occurred on October 1, 2009. The algorithm was first developed in a training area of Altolia and subsequently tested without modifications in an independent area of Itala. Correctly detected were 198 newly triggered landslides, with user accuracies of 81.8% for the number of landslides and 75.9% for the extent of landslides. The principal novelties of this letter are as follows: 1) a fully automatic problem-specified multiscale optimization for image segmentation and 2) a multitemporal analysis at object level with several systemized spectral and textural measurements.File | Dimensione | Formato | |
---|---|---|---|
Lu et al IGRSL 2011.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
547.36 kB
Formato
Adobe PDF
|
547.36 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.