We review some recent results concerning nonlinear eigenvalue problems of the form (∗) Au + epsilon B(u) = delta u, where A is a linear Fredholm operator of index zero (with nontrivial kernel KerA) acting in a real Banach space X, and B : X → X is a (possibly) nonlinear perturbation term. We seek solutions u of (∗) in the unit sphere S of X, and the emphasis is put on the existence - under appropriate conditions on B - of points u_0 ∈ S ∩ KerA (thus satisfying (∗) for epsilon = delta = 0) which either can be continued as solutions of (∗) for epsilon eq 0 or - more generally - are bifurcation points for solutions of that kind

A new theme in nonlinear analysis: continuation and bifurcation of the unit eigenvectors of a perturbed linear operator / R. Chiappinelli; M. Furi; M.P. Pera. - In: COMMUNICATIONS IN APPLIED ANALYSIS. - ISSN 1083-2564. - STAMPA. - 15:(2011), pp. 299-312.

A new theme in nonlinear analysis: continuation and bifurcation of the unit eigenvectors of a perturbed linear operator

FURI, MASSIMO;PERA, MARIA PATRIZIA
2011

Abstract

We review some recent results concerning nonlinear eigenvalue problems of the form (∗) Au + epsilon B(u) = delta u, where A is a linear Fredholm operator of index zero (with nontrivial kernel KerA) acting in a real Banach space X, and B : X → X is a (possibly) nonlinear perturbation term. We seek solutions u of (∗) in the unit sphere S of X, and the emphasis is put on the existence - under appropriate conditions on B - of points u_0 ∈ S ∩ KerA (thus satisfying (∗) for epsilon = delta = 0) which either can be continued as solutions of (∗) for epsilon eq 0 or - more generally - are bifurcation points for solutions of that kind
2011
15
299
312
Goal 17: Partnerships for the goals
R. Chiappinelli; M. Furi; M.P. Pera
File in questo prodotto:
File Dimensione Formato  
13-Chiappinelli-Furi-Pera.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 167.39 kB
Formato Adobe PDF
167.39 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/543285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact