The barite-pyrite-(Pb-Zn-Ag) deposit of Pollone is located in the southernmost tip of the Apuane Alps metamorphic core complex, and is hosted by a siliciclastic formation of pre-Norian age. The southern sector of the deposit mainly consists of stratiform, supposedly syngenetic, barite-pyrite orebodies, whereas the northern area is characterized by a barite-pyrite-(Pb-Zn-Ag) vein system. Vein geometry in the northern area is controlled by a shear zone, developed during the greenschist facies metamorphism which affected the Apuane Alps core complex between 27 and 8 Ma, that was responsible for fluid focusing and vein emplacement. At Pollone, arsenopyrite and chlorite geothermometers show broadly comparable results, and suggest local metamorphic peak temperatures between 320 and 350°C. Phengite geobarometry indicates minimum pressures of about 3.5k bar. Fluid inclusion data and mineral equilibria suggest that the mineralizing fluids were initially hotter than the country rocks (about 450°C at 3.5-4.0kbar). Rocks in direct contact with the orebodies are depleted in Rb and enriched in Sr in comparison to similar rocks elsewhere in the area. This is attributed to the presence of Rb-poor muscovite and Sr-rich barite. Rb-depleted muscovites suggest mineral-fluid interaction in a rock reservoir characterized by a different (modal) mineralogical composition than the Pollone host rocks. The progressive decrease of Sr in barite with increasing distance from the orebodies may be explained with a temperature decrease along the infiltration paths of mineralizing fluids (i.e., from the vein into the wall rocks). The similar O-isotope composition of quartz from veins and host rocks is explained with the overall homogeneous O-isotope composition of the Alpi Apuane basement rocks. This indicates a limited interaction between mineralizing fluids and the rocks exposed at Pollone. Remobilization of syngenetic orebodies was conceivably of minor importance in the production of metamorphogenic veins. Fluid cooling along a major tectonic lineament is thought to be responsible for barite deposition
Metamorphogenic barite-pyrite (Pb-Zn-Ag) veins at Pollone, Apuane Alps, Tuscany: vein geometry, geothermobarometry, fluid inclusions and geochemistry / P. COSTAGLIOLA; M. BENVENUTI; P. LATTANZI; G. TANELLI. - In: MINERALOGY AND PETROLOGY. - ISSN 0930-0708. - STAMPA. - 62:(1998), pp. 29-60.
Metamorphogenic barite-pyrite (Pb-Zn-Ag) veins at Pollone, Apuane Alps, Tuscany: vein geometry, geothermobarometry, fluid inclusions and geochemistry
COSTAGLIOLA, PILARIO;BENVENUTI, MARCO;TANELLI, GIUSEPPE
1998
Abstract
The barite-pyrite-(Pb-Zn-Ag) deposit of Pollone is located in the southernmost tip of the Apuane Alps metamorphic core complex, and is hosted by a siliciclastic formation of pre-Norian age. The southern sector of the deposit mainly consists of stratiform, supposedly syngenetic, barite-pyrite orebodies, whereas the northern area is characterized by a barite-pyrite-(Pb-Zn-Ag) vein system. Vein geometry in the northern area is controlled by a shear zone, developed during the greenschist facies metamorphism which affected the Apuane Alps core complex between 27 and 8 Ma, that was responsible for fluid focusing and vein emplacement. At Pollone, arsenopyrite and chlorite geothermometers show broadly comparable results, and suggest local metamorphic peak temperatures between 320 and 350°C. Phengite geobarometry indicates minimum pressures of about 3.5k bar. Fluid inclusion data and mineral equilibria suggest that the mineralizing fluids were initially hotter than the country rocks (about 450°C at 3.5-4.0kbar). Rocks in direct contact with the orebodies are depleted in Rb and enriched in Sr in comparison to similar rocks elsewhere in the area. This is attributed to the presence of Rb-poor muscovite and Sr-rich barite. Rb-depleted muscovites suggest mineral-fluid interaction in a rock reservoir characterized by a different (modal) mineralogical composition than the Pollone host rocks. The progressive decrease of Sr in barite with increasing distance from the orebodies may be explained with a temperature decrease along the infiltration paths of mineralizing fluids (i.e., from the vein into the wall rocks). The similar O-isotope composition of quartz from veins and host rocks is explained with the overall homogeneous O-isotope composition of the Alpi Apuane basement rocks. This indicates a limited interaction between mineralizing fluids and the rocks exposed at Pollone. Remobilization of syngenetic orebodies was conceivably of minor importance in the production of metamorphogenic veins. Fluid cooling along a major tectonic lineament is thought to be responsible for barite depositionFile | Dimensione | Formato | |
---|---|---|---|
Pollone_MinPetr 1998.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.