A novel identification technique for lumped models of general distributed circuits (i.e. microwave transmission lines, monolithic integrated circuits and filters) is presented. The approach is based on a hybrid multivalued neuron neural network with a modified layer and learning process, whose convergence allows the validation of the approximated lumped model. The modified layer is generated by symbolic analysis of the model under exam. The inputs of the neural network are geometrical parameters, while the outputs represent the estimation of the lumped circuit parameters

A new multi-valued neural network for the extraction of lumped models of analog circuits / F.Grasso; A.Luchetta; S.Manetti; M.C.Piccirilli. - In: ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING. - ISSN 0925-1030. - STAMPA. - 73:(2012), pp. 13-20. [10.1007/s10470-011-9733-3]

A new multi-valued neural network for the extraction of lumped models of analog circuits

GRASSO, FRANCESCO;LUCHETTA, ANTONIO;MANETTI, STEFANO;PICCIRILLI, MARIA CRISTINA
2012

Abstract

A novel identification technique for lumped models of general distributed circuits (i.e. microwave transmission lines, monolithic integrated circuits and filters) is presented. The approach is based on a hybrid multivalued neuron neural network with a modified layer and learning process, whose convergence allows the validation of the approximated lumped model. The modified layer is generated by symbolic analysis of the model under exam. The inputs of the neural network are geometrical parameters, while the outputs represent the estimation of the lumped circuit parameters
2012
73
13
20
F.Grasso; A.Luchetta; S.Manetti; M.C.Piccirilli
File in questo prodotto:
File Dimensione Formato  
AICSJ_Grassoetal.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 442.16 kB
Formato Adobe PDF
442.16 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/576097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact