Using generalized Riemann maps, normal forms for almost complex domains (D,J) with singular foliations by stationary disks are defined. Such normal forms are used to construct counterexamples and to determine intrinsic conditions, under which the stationary disks are extremal disks for the Kobayashi metric or determine solutions to almost complex Monge-Ampère equation. This research was partially supported by INdAM.
Stationary disks and Green functions in almost complex domains / G. Patrizio; A. Spiro. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - STAMPA. - XII:(2013), pp. 975-1000. [10.2422/2036-2145.201103_011]
Stationary disks and Green functions in almost complex domains
PATRIZIO, GIORGIO;
2013
Abstract
Using generalized Riemann maps, normal forms for almost complex domains (D,J) with singular foliations by stationary disks are defined. Such normal forms are used to construct counterexamples and to determine intrinsic conditions, under which the stationary disks are extremal disks for the Kobayashi metric or determine solutions to almost complex Monge-Ampère equation. This research was partially supported by INdAM.File | Dimensione | Formato | |
---|---|---|---|
StationaryDisksACD.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
729.93 kB
Formato
Adobe PDF
|
729.93 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.