In this paper we propose a system architecture for enabling mobile nodes to query a largely deployed wireless sensor network in an intelligent transportation system scenario. We identify three different types of nodes in the network: mobile sinks (i.e. the nodes moving and querying the WSN), vice-sinks (i.e. nodes able to communicate directly with mobile sinks) and ordinary sensor nodes (i.e. nodes sensing a phenomenon and communicating in a multihop fashion). We present protocols and algorithms specifically tailored to such a scenario, in particular at the MAC and network layers. Such a reference architecture well covers situations in which WSNs deployed in a parking place or along a road, provide to cars information on the conditions of the surrounding environment. We introduce and analyse a simple geographic routing protocol and two different load balancing techniques. The performance of the proposed solutions is evaluated through extensive simulations. The simple geographic routing is compared to load balancing techniques. Results support the capability of the proposed solutions to enable the introduction of novel intelligent transportation system applications.

Using wireless sensor networks to support intelligent transportation systems / David Tacconi;Daniele Miorandi;Iacopo Carreras;Francesco Chiti;Romano Fantacci. - In: AD HOC NETWORKS. - ISSN 1570-8705. - ELETTRONICO. - 8:(2010), pp. 462-473. [10.1016/j.adhoc.2009.12.007]

Using wireless sensor networks to support intelligent transportation systems

CHITI, FRANCESCO;FANTACCI, ROMANO
2010

Abstract

In this paper we propose a system architecture for enabling mobile nodes to query a largely deployed wireless sensor network in an intelligent transportation system scenario. We identify three different types of nodes in the network: mobile sinks (i.e. the nodes moving and querying the WSN), vice-sinks (i.e. nodes able to communicate directly with mobile sinks) and ordinary sensor nodes (i.e. nodes sensing a phenomenon and communicating in a multihop fashion). We present protocols and algorithms specifically tailored to such a scenario, in particular at the MAC and network layers. Such a reference architecture well covers situations in which WSNs deployed in a parking place or along a road, provide to cars information on the conditions of the surrounding environment. We introduce and analyse a simple geographic routing protocol and two different load balancing techniques. The performance of the proposed solutions is evaluated through extensive simulations. The simple geographic routing is compared to load balancing techniques. Results support the capability of the proposed solutions to enable the introduction of novel intelligent transportation system applications.
2010
8
462
473
David Tacconi;Daniele Miorandi;Iacopo Carreras;Francesco Chiti;Romano Fantacci
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/600653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 61
social impact