Poly(ADP-ribose) polymerase-1 (PARP-1) is a NAD-consuming enzyme with an emerging key role in epigenetic regulation of gene transcription. Although PARP-1 expression is characteristically restricted to the nucleus, a few studies report the mitochondrial localization of the enzyme and its ability to regulate organelle functioning. Here, we show that, despite exclusive nuclear localization of PARP-1, mitochondrial homeostasis is compromised in cell lines exposed to PARP-1 pharmacological inhibitors or small interfering RNA. PARP-1 suppression reduces integrity of mitochondrial DNA (mtDNA), as well as expression of mitochondria-encoded respiratory complex subunits COX-1, COX-2, and ND-2. Accordingly, PARP-1 localizes at promoters of nuclear genes encoding both the mtDNA repair proteins UNG1, MYH1, and APE1 and the mtDNA transcription factors TFB1M and TFB2M. It is noteworthy that poly(ADP-ribosyl)ation is required for nuclear gene expression of these mitochondrial proteins. Consistent with these findings, PARP-1 suppression impairs mitochondrial ATP production. Our results indicate that PARP-1 plays a central role in mitochondrial homeostasis by epigenetically regulating nuclear genes involved in mtDNA repair and transcription. These data might have important implications in pharmacology of PARP-1 inhibitors as well as clinical oncology and aging.
Poly(ADP-ribose) polymerase-1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription / A. Lapucci; M. Pittelli; E. Rapizzi; R. Felici; F. Moroni; A. Chiarugi. - In: MOLECULAR PHARMACOLOGY. - ISSN 0026-895X. - ELETTRONICO. - 79:(2011), pp. 932-940. [10.1124/mol.110.070110]
Poly(ADP-ribose) polymerase-1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription
LAPUCCI, ANDREA;PITTELLI, MARIA;RAPIZZI, ELENA;FELICI, ROBERTA;MORONI, FLAVIO;CHIARUGI, ALBERTO
2011
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a NAD-consuming enzyme with an emerging key role in epigenetic regulation of gene transcription. Although PARP-1 expression is characteristically restricted to the nucleus, a few studies report the mitochondrial localization of the enzyme and its ability to regulate organelle functioning. Here, we show that, despite exclusive nuclear localization of PARP-1, mitochondrial homeostasis is compromised in cell lines exposed to PARP-1 pharmacological inhibitors or small interfering RNA. PARP-1 suppression reduces integrity of mitochondrial DNA (mtDNA), as well as expression of mitochondria-encoded respiratory complex subunits COX-1, COX-2, and ND-2. Accordingly, PARP-1 localizes at promoters of nuclear genes encoding both the mtDNA repair proteins UNG1, MYH1, and APE1 and the mtDNA transcription factors TFB1M and TFB2M. It is noteworthy that poly(ADP-ribosyl)ation is required for nuclear gene expression of these mitochondrial proteins. Consistent with these findings, PARP-1 suppression impairs mitochondrial ATP production. Our results indicate that PARP-1 plays a central role in mitochondrial homeostasis by epigenetically regulating nuclear genes involved in mtDNA repair and transcription. These data might have important implications in pharmacology of PARP-1 inhibitors as well as clinical oncology and aging.File | Dimensione | Formato | |
---|---|---|---|
Lapucci et al. 2011.pdf
Accesso chiuso
Tipologia:
Altro
Licenza:
Tutti i diritti riservati
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.