Poly(ADP-ribose) polymerase-1 (PARP-1) is a NAD-consuming enzyme with an emerging key role in epigenetic regulation of gene transcription. Although PARP-1 expression is characteristically restricted to the nucleus, a few studies report the mitochondrial localization of the enzyme and its ability to regulate organelle functioning. Here, we show that, despite exclusive nuclear localization of PARP-1, mitochondrial homeostasis is compromised in cell lines exposed to PARP-1 pharmacological inhibitors or small interfering RNA. PARP-1 suppression reduces integrity of mitochondrial DNA (mtDNA), as well as expression of mitochondria-encoded respiratory complex subunits COX-1, COX-2, and ND-2. Accordingly, PARP-1 localizes at promoters of nuclear genes encoding both the mtDNA repair proteins UNG1, MYH1, and APE1 and the mtDNA transcription factors TFB1M and TFB2M. It is noteworthy that poly(ADP-ribosyl)ation is required for nuclear gene expression of these mitochondrial proteins. Consistent with these findings, PARP-1 suppression impairs mitochondrial ATP production. Our results indicate that PARP-1 plays a central role in mitochondrial homeostasis by epigenetically regulating nuclear genes involved in mtDNA repair and transcription. These data might have important implications in pharmacology of PARP-1 inhibitors as well as clinical oncology and aging.

Poly(ADP-ribose) polymerase-1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription / A. Lapucci; M. Pittelli; E. Rapizzi; R. Felici; F. Moroni; A. Chiarugi. - In: MOLECULAR PHARMACOLOGY. - ISSN 0026-895X. - ELETTRONICO. - 79:(2011), pp. 932-940. [10.1124/mol.110.070110]

Poly(ADP-ribose) polymerase-1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription

LAPUCCI, ANDREA;PITTELLI, MARIA;RAPIZZI, ELENA;FELICI, ROBERTA;MORONI, FLAVIO;CHIARUGI, ALBERTO
2011

Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) is a NAD-consuming enzyme with an emerging key role in epigenetic regulation of gene transcription. Although PARP-1 expression is characteristically restricted to the nucleus, a few studies report the mitochondrial localization of the enzyme and its ability to regulate organelle functioning. Here, we show that, despite exclusive nuclear localization of PARP-1, mitochondrial homeostasis is compromised in cell lines exposed to PARP-1 pharmacological inhibitors or small interfering RNA. PARP-1 suppression reduces integrity of mitochondrial DNA (mtDNA), as well as expression of mitochondria-encoded respiratory complex subunits COX-1, COX-2, and ND-2. Accordingly, PARP-1 localizes at promoters of nuclear genes encoding both the mtDNA repair proteins UNG1, MYH1, and APE1 and the mtDNA transcription factors TFB1M and TFB2M. It is noteworthy that poly(ADP-ribosyl)ation is required for nuclear gene expression of these mitochondrial proteins. Consistent with these findings, PARP-1 suppression impairs mitochondrial ATP production. Our results indicate that PARP-1 plays a central role in mitochondrial homeostasis by epigenetically regulating nuclear genes involved in mtDNA repair and transcription. These data might have important implications in pharmacology of PARP-1 inhibitors as well as clinical oncology and aging.
2011
79
932
940
A. Lapucci; M. Pittelli; E. Rapizzi; R. Felici; F. Moroni; A. Chiarugi
File in questo prodotto:
File Dimensione Formato  
Lapucci et al. 2011.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/605581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 51
social impact