PURPOSE. Oxygen-induced retinopathy (OIR) is a model for human retinopathy of prematurity (ROP). In OIR mice, this study determined whether blockade of -adrenergic receptors (-ARs) with propranolol influences retinal levels of proangiogenic factors, retinal vascularization, and blood–retinal barrier (BRB) breakdown. METHODS. Propranolol was administered subcutaneously and picropodophyllin (PPP) intraperitoneally. Intravitreal injections of vascular endothelial growth factor (VEGF) were performed. Messengers of -ARs, VEGF, its receptors, IGF-1 and IGF-1R were measured with quantitative RT-PCR. VEGF content was determined with ELISA. -ARs, hypoxia-inducible factor (HIF)-1, occludin, and albumin were measured with Western blot. Retinal localization of 3-ARs was determined by immunohistochemistry. Retinopathy was assessed by scoring fluorescein-perfused retinas, and plasma extravasation was visualized by Evans blue dye. RESULTS. Hypoxia did not influence -AR expression, except that it increased 3-AR protein with dense 3-AR immunoreactivity localized to engorged retinal tufts. Hypoxia upregulated VEGF, IGF-1, their receptors, and HIF-1. Propranolol dose-dependently reduced upregulated VEGF and decreased hypoxic levels of IGF-1 mRNA and HIF-1. Blockade of IGF-1R activity with PPP did not influence propranolol’s effects on VEGF. Retinal VEGF in normoxic mice or VEGF in brain, lungs, and heart of the OIR mice were unaffected by propranolol. Propranolol ameliorated the retinopathy score, restored occludin and albumin, and reduced hypoxia-induced plasma extravasation without influencing the vascular permeability induced by intravitreal VEGF. CONCLUSIONS. This is the first demonstration that -AR blockade is protective against retinal angiogenesis and ameliorates BRB dysfunction in OIR. Although the relevance of these results to infant ROP is uncertain, the findings may help to establish potential pharmacologic targets based on 3-AR pharmacology.

Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: antiangiogenic effects of beta-adrenoreceptor blockade / Ristori C; Filippi L; Dal Monte M; Martini D; Cammalleri M; Fortunato P; la Marca G; Fiorini P; Bagnoli P.. - In: INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE. - ISSN 0146-0404. - ELETTRONICO. - 52:(2011), pp. 155-170.

Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: antiangiogenic effects of beta-adrenoreceptor blockade.

LA MARCA, GIANCARLO;
2011

Abstract

PURPOSE. Oxygen-induced retinopathy (OIR) is a model for human retinopathy of prematurity (ROP). In OIR mice, this study determined whether blockade of -adrenergic receptors (-ARs) with propranolol influences retinal levels of proangiogenic factors, retinal vascularization, and blood–retinal barrier (BRB) breakdown. METHODS. Propranolol was administered subcutaneously and picropodophyllin (PPP) intraperitoneally. Intravitreal injections of vascular endothelial growth factor (VEGF) were performed. Messengers of -ARs, VEGF, its receptors, IGF-1 and IGF-1R were measured with quantitative RT-PCR. VEGF content was determined with ELISA. -ARs, hypoxia-inducible factor (HIF)-1, occludin, and albumin were measured with Western blot. Retinal localization of 3-ARs was determined by immunohistochemistry. Retinopathy was assessed by scoring fluorescein-perfused retinas, and plasma extravasation was visualized by Evans blue dye. RESULTS. Hypoxia did not influence -AR expression, except that it increased 3-AR protein with dense 3-AR immunoreactivity localized to engorged retinal tufts. Hypoxia upregulated VEGF, IGF-1, their receptors, and HIF-1. Propranolol dose-dependently reduced upregulated VEGF and decreased hypoxic levels of IGF-1 mRNA and HIF-1. Blockade of IGF-1R activity with PPP did not influence propranolol’s effects on VEGF. Retinal VEGF in normoxic mice or VEGF in brain, lungs, and heart of the OIR mice were unaffected by propranolol. Propranolol ameliorated the retinopathy score, restored occludin and albumin, and reduced hypoxia-induced plasma extravasation without influencing the vascular permeability induced by intravitreal VEGF. CONCLUSIONS. This is the first demonstration that -AR blockade is protective against retinal angiogenesis and ameliorates BRB dysfunction in OIR. Although the relevance of these results to infant ROP is uncertain, the findings may help to establish potential pharmacologic targets based on 3-AR pharmacology.
2011
52
155
170
Ristori C; Filippi L; Dal Monte M; Martini D; Cammalleri M; Fortunato P; la Marca G; Fiorini P; Bagnoli P.
File in questo prodotto:
File Dimensione Formato  
2011 - IOVS.pdf

accesso aperto

Tipologia: Altro
Licenza: Open Access
Dimensione 3.66 MB
Formato Adobe PDF
3.66 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/606676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 130
  • ???jsp.display-item.citation.isi??? 120
social impact