We investigate the effects of risk perception in a simple model of epidemic spreading. We assume that the perception of the risk of being infected depends on the fraction of neighbors that are ill. The effect of this factor is to decrease the infectivity, that therefore becomes a dynamical component of the model. We study the problem in the mean-field approximation and by numerical simulations for regular, random, and scale-free networks. We show that for homogeneous and random networks, there is always a value of perception that stops the epidemics. In the “worst-case” scenario of a scale-free network with diverging input connectivity, a linear perception cannot stop the epidemics; however, we show that a nonlinear increase of the perception risk may lead to the extinction of the disease. This transition is discontinuous, and is not predicted by the mean-field analysis.
Risk perception in epidemic modeling / Franco Bagnoli; Pietro Lió; Luca Sguanci. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - STAMPA. - 76:(2007), pp. 061904-1-061904-7. [10.1103/PhysRevE.76.061904]
Risk perception in epidemic modeling
BAGNOLI, FRANCO;SGUANCI, LUCA
2007
Abstract
We investigate the effects of risk perception in a simple model of epidemic spreading. We assume that the perception of the risk of being infected depends on the fraction of neighbors that are ill. The effect of this factor is to decrease the infectivity, that therefore becomes a dynamical component of the model. We study the problem in the mean-field approximation and by numerical simulations for regular, random, and scale-free networks. We show that for homogeneous and random networks, there is always a value of perception that stops the epidemics. In the “worst-case” scenario of a scale-free network with diverging input connectivity, a linear perception cannot stop the epidemics; however, we show that a nonlinear increase of the perception risk may lead to the extinction of the disease. This transition is discontinuous, and is not predicted by the mean-field analysis.File | Dimensione | Formato | |
---|---|---|---|
PhysRevE.76.061904.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
139.34 kB
Formato
Adobe PDF
|
139.34 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.