Polynuclear single-molecule magnets (SMMs) were diluted in a diamagnetic crystal lattice to afford arrays of independent and iso-oriented magnetic units. Crystalline solid solutions of an Fe4 SMM and its Ga4 analogue were prepared with no metal scrambling for Fe4 molar fractions x down to 0.01. According to high-frequency EPR and magnetic measurements, the guest SMM species have the same total spin (S=5), anisotropy, and high-temperature spin dynamics found in the pure Fe4 phase. However, suppression of intermolecular magnetic interactions affects magnetic relaxation at low temperature (40 mK), where quantum tunneling (QT) of the magnetization dominates. When a magnetic field is applied along the easy magnetic axis, both pure and diluted (x=0.01) phases display pronounced steps at evenly spaced field values in their hysteresis loops due to resonant QT. The pure Fe4 phase exhibits additional steps which are firmly ascribed to two-molecule QT transitions. Studies on the field-dependent relaxation rate showed that the zero-field resonance sharpens by a factor of five and shifts from about 8 mT to exactly zero field on dilution, in agreement with the calculated variation of dipolar interactions. The tunneling efficiency also changes significantly as a function of Fe4 concentration: the zero-field resonance is significantly enhanced on dilution, while tunneling at ±0.45 T becomes less efficient. These changes were rationalized on the basis of a dipolar shuffling mechanism and transverse dipolar fields, whose effect was analyzed by using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on SMM behavior and disclose the magnetic response of truly isolated giant spins in a diamagnetic crystalline environment.

Magnetic Bistability of Isolated Giant-Spin Centers in a Diamagnetic Crystalline Matrix / Luca Vergnani;Anne-Laure Barra;Petr Neugebauer;Maria Jesus Rodriguez-Douton;Roberta Sessoli;Lorenzo Sorace;Wolfgang Wernsdorfer;Andrea Cornia. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. - STAMPA. - 18:(2012), pp. 3390-3398. [10.1002/chem.201103251]

Magnetic Bistability of Isolated Giant-Spin Centers in a Diamagnetic Crystalline Matrix

SESSOLI, ROBERTA;SORACE, LORENZO;
2012

Abstract

Polynuclear single-molecule magnets (SMMs) were diluted in a diamagnetic crystal lattice to afford arrays of independent and iso-oriented magnetic units. Crystalline solid solutions of an Fe4 SMM and its Ga4 analogue were prepared with no metal scrambling for Fe4 molar fractions x down to 0.01. According to high-frequency EPR and magnetic measurements, the guest SMM species have the same total spin (S=5), anisotropy, and high-temperature spin dynamics found in the pure Fe4 phase. However, suppression of intermolecular magnetic interactions affects magnetic relaxation at low temperature (40 mK), where quantum tunneling (QT) of the magnetization dominates. When a magnetic field is applied along the easy magnetic axis, both pure and diluted (x=0.01) phases display pronounced steps at evenly spaced field values in their hysteresis loops due to resonant QT. The pure Fe4 phase exhibits additional steps which are firmly ascribed to two-molecule QT transitions. Studies on the field-dependent relaxation rate showed that the zero-field resonance sharpens by a factor of five and shifts from about 8 mT to exactly zero field on dilution, in agreement with the calculated variation of dipolar interactions. The tunneling efficiency also changes significantly as a function of Fe4 concentration: the zero-field resonance is significantly enhanced on dilution, while tunneling at ±0.45 T becomes less efficient. These changes were rationalized on the basis of a dipolar shuffling mechanism and transverse dipolar fields, whose effect was analyzed by using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on SMM behavior and disclose the magnetic response of truly isolated giant spins in a diamagnetic crystalline environment.
2012
18
3390
3398
Luca Vergnani;Anne-Laure Barra;Petr Neugebauer;Maria Jesus Rodriguez-Douton;Roberta Sessoli;Lorenzo Sorace;Wolfgang Wernsdorfer;Andrea Cornia
File in questo prodotto:
File Dimensione Formato  
3390_ftp.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 648.76 kB
Formato Adobe PDF
648.76 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/628023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact