Airborne polyvinylidenefluoride transducers have been designed for robotic applications in air. Characteristics of transducer prototypes are: working frequencies from 61 kHz to 86 kHz, quality factor Q from 4 to 6, and two-way insertion loss of about 90 dB. The small dimension, the lightness, and the low-cost fabrication technology allow the development of arrays or matrices for ultrasonic imaging systems in air. In this work two different image reconstruction algorithms are proposed: the first carries out a combined spectral and aperture synthesis for detecting isolated scatterers with a spatial resolution of about 2 mm; the second is based on an accurate ranging algorithm with sub-millimeter resolution at distances up to 50 cm. Finally, this work's application to the reconstruction of three-dimensional object profiles is discussed.
Piezo-polymer transducers for ultrasonic imaging in air / L. Capineri; A.S. Fiorillo; L. Masotti; S. Rocchi. - In: IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL. - ISSN 0885-3010. - ELETTRONICO. - 44:(1997), pp. 36-43. [10.1109/58.585188]
Piezo-polymer transducers for ultrasonic imaging in air
CAPINERI, LORENZO;MASOTTI, LEONARDO;
1997
Abstract
Airborne polyvinylidenefluoride transducers have been designed for robotic applications in air. Characteristics of transducer prototypes are: working frequencies from 61 kHz to 86 kHz, quality factor Q from 4 to 6, and two-way insertion loss of about 90 dB. The small dimension, the lightness, and the low-cost fabrication technology allow the development of arrays or matrices for ultrasonic imaging systems in air. In this work two different image reconstruction algorithms are proposed: the first carries out a combined spectral and aperture synthesis for detecting isolated scatterers with a spatial resolution of about 2 mm; the second is based on an accurate ranging algorithm with sub-millimeter resolution at distances up to 50 cm. Finally, this work's application to the reconstruction of three-dimensional object profiles is discussed.File | Dimensione | Formato | |
---|---|---|---|
Capineri_IEEE_UFFC_1997.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.