In eukaryotic cells, proper position of the mitotic spindle and the division plane is necessary for successful cell division and development. In this work the nature of forces governing the positioning and elongation of the mitotic spindle and the spatio-temporal regulation of the division plane positioning in fission yeast was studied. By using a mechanical perturbations induced by laser dissection of the spindle and astral microtubules, we found that astral microtubules push on the spindle poles. Further, laser dissection of the spindle midzone induced spindle collapse inward. This suggests that the spindle is driven by the sliding apart of antiparallel microtubules in the spindle midzone. Exploiting a combination of non-linear microscopy and optical trapping, we performed an optical manipulation procedure designed to displace the cell nucleus away from its normal position in the center of the cell. After the laser-induced displacement, the nucleus typically returned towards the cell center, in a manner correlated with the extension of a microtubule from the nucleus to the closer tip of the cell. This observation suggests that the centering of the nucleus is provided by microtubule pushing force. Moreover the cells in which the nucleus was displaced during interphase displayed asymmetric division, whereas when the nucleus was displaced during late prophase or metaphase, the division plane formed at the cell center as in non-manipulated cells. This result suggests that in fission yeast the division plane is selected before pro-metaphase and that the signal is not provided by the mitotic spindle.

Optical micromanipulation inside the cell: a focus in cell division / L. Sacconi; I. Tolic-Norrelykke; C. Stringari; R. Antolini; F. S. Pavone. - STAMPA. - (2006), pp. 60881C-60881C. (Intervento presentato al convegno Progress in Biomedical Optics and Imaging).

Optical micromanipulation inside the cell: a focus in cell division

PAVONE, FRANCESCO SAVERIO
2006

Abstract

In eukaryotic cells, proper position of the mitotic spindle and the division plane is necessary for successful cell division and development. In this work the nature of forces governing the positioning and elongation of the mitotic spindle and the spatio-temporal regulation of the division plane positioning in fission yeast was studied. By using a mechanical perturbations induced by laser dissection of the spindle and astral microtubules, we found that astral microtubules push on the spindle poles. Further, laser dissection of the spindle midzone induced spindle collapse inward. This suggests that the spindle is driven by the sliding apart of antiparallel microtubules in the spindle midzone. Exploiting a combination of non-linear microscopy and optical trapping, we performed an optical manipulation procedure designed to displace the cell nucleus away from its normal position in the center of the cell. After the laser-induced displacement, the nucleus typically returned towards the cell center, in a manner correlated with the extension of a microtubule from the nucleus to the closer tip of the cell. This observation suggests that the centering of the nucleus is provided by microtubule pushing force. Moreover the cells in which the nucleus was displaced during interphase displayed asymmetric division, whereas when the nucleus was displaced during late prophase or metaphase, the division plane formed at the cell center as in non-manipulated cells. This result suggests that in fission yeast the division plane is selected before pro-metaphase and that the signal is not provided by the mitotic spindle.
2006
Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues
Progress in Biomedical Optics and Imaging
L. Sacconi; I. Tolic-Norrelykke; C. Stringari; R. Antolini; F. S. Pavone
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/653441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact