Recently, two-photon microscopy has been used to perform high spatial resolution imaging of spine plasticity in the intact neocortex in living mice. In this work we study the in vivo spine rearrangements after an acute and selective damage. For this purpose, we have used a near-IR femtosecond pulsed laser to combine two-photon microscopy imaging with microdissection operation on fluorescently-labeled neurons. Three-dimensional reconstructions of dendrites expressing fluorescence protein have been performed in the cortex of YFP-H and GFP-M transgenic living mice. Afterwards, single dendrites have been laser-dissected irradiating the structure with a high femtosecond laser energy dose. By using a chronically implanted glass window we performed long-term imaging in the area of the dissected dendrite. We will show that laser ablation can be performed with micrometric precision and without visible collateral damage to nearby neuronal structures. Also, we will evidence the morphological changes of the dendritic branches and dendritic spines after this specific perturbation inside the intact neuronal network. Laser microdissection of selected structures of I the neuronal branching in vivo represents a promising tool for neurobiological research.
Laser-induced microlesion of single dendrites in living mice / L. Sacconi; A. Masi; G. Diana; M. Buffelli; F. S. Pavone. - STAMPA. - (2007), pp. 64421O-64421O. (Intervento presentato al convegno Progress in Biomedical Optics and Imaging).
Laser-induced microlesion of single dendrites in living mice
A. Masi;PAVONE, FRANCESCO SAVERIO
2007
Abstract
Recently, two-photon microscopy has been used to perform high spatial resolution imaging of spine plasticity in the intact neocortex in living mice. In this work we study the in vivo spine rearrangements after an acute and selective damage. For this purpose, we have used a near-IR femtosecond pulsed laser to combine two-photon microscopy imaging with microdissection operation on fluorescently-labeled neurons. Three-dimensional reconstructions of dendrites expressing fluorescence protein have been performed in the cortex of YFP-H and GFP-M transgenic living mice. Afterwards, single dendrites have been laser-dissected irradiating the structure with a high femtosecond laser energy dose. By using a chronically implanted glass window we performed long-term imaging in the area of the dissected dendrite. We will show that laser ablation can be performed with micrometric precision and without visible collateral damage to nearby neuronal structures. Also, we will evidence the morphological changes of the dendritic branches and dendritic spines after this specific perturbation inside the intact neuronal network. Laser microdissection of selected structures of I the neuronal branching in vivo represents a promising tool for neurobiological research.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.