Sulphite oxidation and sulphur trioxide radical formation were studied in polymorphonuclear leukocytes (PMNs) isolated from healthy young, old and centenarian donors and from patients with Down's syndrome. The sulphur radical formation measured by electron spin resonance spectroscopy-spin trapping (EPR-ST) was correlated with the activity of sulphite oxidase and with the rate of sulphite oxidation to sulphate by PMNs. Sulphite metabolism was studied both in resting, and phorbol myristate acetate (PMA) stimulated freshly isolated cells. The rate of sulphur trioxide radical formation was demonstrated by use of the spin trapping agent 5,5-dimethyl-1-pyroline-1-oxide (DMPO) with subsequent formation of an adduct. The intensity of adduct formation was most intense in cells with low sulphite oxidase activity, while a mixture of the adduct and of DMPO hydroxyl radical was mainly observed in cells with high sulphite oxidase activity. Furthermore, experiments carried out on purified sulphite oxidase showed that in the presence of sulphite the enzyme could also give rise to a DMPO-OH adduct. Sulphite oxidase activity in cells isolated from healthy young and old donors was positive correlated with both rates of sulphur trioxide radical formation and sulphite oxidation to sulphate, respectively. However, sulphite oxidase activity in cells isolated from centenarians and patients with Down's syndrome seems to loose partly its rate of oxidising sulphite to sulphate. The intensity of the sulphur centred radical adduct increased in the two latter groups of population and the radical observed was predominantly sulphur trioxide radical.

Age-related differences in the metabolism of sulphite to sulphate and in the identification of sulphur trioxide radical in human polymorphonuclear leukocytes / D. Constantin;A. Bini;E. Meletti;P. Moldeus;D. Monti;A. Tomasi. - In: MECHANISMS OF AGEING AND DEVELOPMENT. - ISSN 0047-6374. - STAMPA. - 88:(1996), pp. 95-109.

Age-related differences in the metabolism of sulphite to sulphate and in the identification of sulphur trioxide radical in human polymorphonuclear leukocytes.

MONTI, DANIELA;
1996

Abstract

Sulphite oxidation and sulphur trioxide radical formation were studied in polymorphonuclear leukocytes (PMNs) isolated from healthy young, old and centenarian donors and from patients with Down's syndrome. The sulphur radical formation measured by electron spin resonance spectroscopy-spin trapping (EPR-ST) was correlated with the activity of sulphite oxidase and with the rate of sulphite oxidation to sulphate by PMNs. Sulphite metabolism was studied both in resting, and phorbol myristate acetate (PMA) stimulated freshly isolated cells. The rate of sulphur trioxide radical formation was demonstrated by use of the spin trapping agent 5,5-dimethyl-1-pyroline-1-oxide (DMPO) with subsequent formation of an adduct. The intensity of adduct formation was most intense in cells with low sulphite oxidase activity, while a mixture of the adduct and of DMPO hydroxyl radical was mainly observed in cells with high sulphite oxidase activity. Furthermore, experiments carried out on purified sulphite oxidase showed that in the presence of sulphite the enzyme could also give rise to a DMPO-OH adduct. Sulphite oxidase activity in cells isolated from healthy young and old donors was positive correlated with both rates of sulphur trioxide radical formation and sulphite oxidation to sulphate, respectively. However, sulphite oxidase activity in cells isolated from centenarians and patients with Down's syndrome seems to loose partly its rate of oxidising sulphite to sulphate. The intensity of the sulphur centred radical adduct increased in the two latter groups of population and the radical observed was predominantly sulphur trioxide radical.
1996
88
95
109
D. Constantin;A. Bini;E. Meletti;P. Moldeus;D. Monti;A. Tomasi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/654501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact