The problem of designing linear time-invariant feedback controllers to stabilize unstable periodic orbits for a class of sinusoidally forced nonlinear systems is considered. Exploiting the classical circle criterion, a sufficient condition for the stabilization of unstable periodic solutions is derived for a class of controllers that generalizes the time delayed one proposed by Pyragas, Based on this condition, a technique for designing optimal controllers is proposed. The validity of the technique and the performance of the designed controllers are illustrated via one example concerning the forced Duffing oscillator.

Stabilizing periodic orbits of forced systems via generalized Pyragas controllers / M. Basso; R. Genesio; A. Tesi. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I. FUNDAMENTAL THEORY AND APPLICATIONS. - ISSN 1057-7122. - STAMPA. - 44:(1997), pp. 1023-1027. [10.1109/81.633895]

Stabilizing periodic orbits of forced systems via generalized Pyragas controllers

BASSO, MICHELE;GENESIO, ROBERTO;TESI, ALBERTO
1997

Abstract

The problem of designing linear time-invariant feedback controllers to stabilize unstable periodic orbits for a class of sinusoidally forced nonlinear systems is considered. Exploiting the classical circle criterion, a sufficient condition for the stabilization of unstable periodic solutions is derived for a class of controllers that generalizes the time delayed one proposed by Pyragas, Based on this condition, a technique for designing optimal controllers is proposed. The validity of the technique and the performance of the designed controllers are illustrated via one example concerning the forced Duffing oscillator.
1997
44
1023
1027
M. Basso; R. Genesio; A. Tesi
File in questo prodotto:
File Dimensione Formato  
Basso-Genesio-Tesi-1997.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 140.76 kB
Formato Adobe PDF
140.76 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/655461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 29
social impact