We use a Carleman type inequality of Koch and Tataru to obtain quantitative estimates of unique continuation for solutions of second-order elliptic equations with singular lower order terms. First we prove a three sphere inequality and then describe two methods of propagation of smallness from sets of positive measure.
Quantitative uniqueness for elliptic equations with singular lower order terms / Malinnikova E.; Vessella S.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 353:(2012), pp. 1157-1181. [10.1007/s00208-011-0712-x]
Quantitative uniqueness for elliptic equations with singular lower order terms
VESSELLA, SERGIO
2012
Abstract
We use a Carleman type inequality of Koch and Tataru to obtain quantitative estimates of unique continuation for solutions of second-order elliptic equations with singular lower order terms. First we prove a three sphere inequality and then describe two methods of propagation of smallness from sets of positive measure.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Malinnikova_Vessella.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
453.96 kB
Formato
Adobe PDF
|
453.96 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.