We use a Carleman type inequality of Koch and Tataru to obtain quantitative estimates of unique continuation for solutions of second-order elliptic equations with singular lower order terms. First we prove a three sphere inequality and then describe two methods of propagation of smallness from sets of positive measure.

Quantitative uniqueness for elliptic equations with singular lower order terms / Malinnikova E.; Vessella S.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 353:(2012), pp. 1157-1181. [10.1007/s00208-011-0712-x]

Quantitative uniqueness for elliptic equations with singular lower order terms

VESSELLA, SERGIO
2012

Abstract

We use a Carleman type inequality of Koch and Tataru to obtain quantitative estimates of unique continuation for solutions of second-order elliptic equations with singular lower order terms. First we prove a three sphere inequality and then describe two methods of propagation of smallness from sets of positive measure.
2012
353
1157
1181
Malinnikova E.; Vessella S.
File in questo prodotto:
File Dimensione Formato  
Malinnikova_Vessella.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 453.96 kB
Formato Adobe PDF
453.96 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/655481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact