The RD48 (ROSE) collaboration has succeeded to develop radiation hard silicon detectors, capable to withstand the harsh hadron fluences in the tracking areas of LHC experiments. In order to reach this objective, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing. Systematic investigations have been carried out on various standard and oxygenated silicon diodes with neutron, proton and pion irradiation up to a fluence of 5×1014 cm−2 (1 MeV neutron equivalent). Major focus is on the changes of the effective doping concentration (depletion voltage). Other aspects (reverse current, charge collection) are covered too and the appreciable benefits obtained with DOFZ silicon in radiation tolerance for charged hadrons are outlined. The results are reliably described by the “Hamburg model”: its application to LHC experimental conditions is shown, demonstrating the superiority of the defect engineered silicon. Microscopic aspects of damage effects are also discussed, including differences due to charged and neutral hadron irradiation.

Radiation hard silicon detectors—developments by the RD48 (ROSE) collaboration / G Lindström;M Ahmed;S Albergo;P Allport;D Anderson;L Andricek;M.M Angarano;V Augelli;N Bacchetta;P Bartalini;R Bates;U Biggeri;G.M Bilei;D Bisello;D Boemi;E Borchi;T Botila;T.J Brodbeck;M Bruzzi;T Budzynski;P Burger;F Campabadal;G Casse;E Catacchini;A Chilingarov;P Ciampolini;V Cindro;M.J Costa;D Creanza;P Clauws;C Da Via;G Davies;W De Boer;R Dell’Orso;M De Palma;B Dezillie;V Eremin;O Evrard;G Fallica;G Fanourakis;H Feick;E Focardi;L Fonseca;E Fretwurst;J Fuster;K Gabathuler;M Glaser;P Grabiec;E Grigoriev;G Hall;M Hanlon;F Hauler;S Heising;A Holmes-Siedle;R Horisberger;G Hughes;M Huhtinen;I Ilyashenko;A Ivanov;B.K Jones;L Jungermann;A Kaminsky;Z Kohout;G Kramberger;M Kuhnke;S Kwan;F Lemeilleur;C Leroy;M Letheren;Z Li;T Ligonzo;V Linhart;P Litovchenko;D Loukas;M Lozano;Z Luczynski;G Lutz;B MacEvoy;S Manolopoulos;A Markou;C Martinez;A Messineo;M Mikuž;M Moll;E Nossarzewska;G Ottaviani;V Oshea;G Parrini;D Passeri;D Petre;A Pickford;I Pintilie;L Pintilie;S Pospisil;R Potenza;C Raine;J.M Rafi;P.N Ratoff;R.H Richter;P Riedler;S Roe;P Roy;A Ruzin;A.I Ryazanov;A Santocchia;L Schiavulli;P Sicho;I Siotis;T Sloan;W Slysz;K Smith;M Solanky;B Sopko;K Stolze;B Sundby Avset;B Svensson;C Tivarus;G Tonelli;A Tricomi;S Tzamarias;G Valvo;A Vasilescu;A Vayaki;E Verbitskaya;P Verdini;V Vrba;S Watts;E.R Weber;M Wegrzecki;I Wegrzecka;P Weilhammer;R Wheadon;C Wilburn;I Wilhelm;R Wunstorf;J Wüstenfeld;J Wyss;K Zankel;P Zabierowski;D Žontar. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - ELETTRONICO. - 466:(2001), pp. 308-326. [10.1016/S0168-9002(01)00560-5]

Radiation hard silicon detectors—developments by the RD48 (ROSE) collaboration

BRUZZI, MARA;FOCARDI, ETTORE;
2001

Abstract

The RD48 (ROSE) collaboration has succeeded to develop radiation hard silicon detectors, capable to withstand the harsh hadron fluences in the tracking areas of LHC experiments. In order to reach this objective, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing. Systematic investigations have been carried out on various standard and oxygenated silicon diodes with neutron, proton and pion irradiation up to a fluence of 5×1014 cm−2 (1 MeV neutron equivalent). Major focus is on the changes of the effective doping concentration (depletion voltage). Other aspects (reverse current, charge collection) are covered too and the appreciable benefits obtained with DOFZ silicon in radiation tolerance for charged hadrons are outlined. The results are reliably described by the “Hamburg model”: its application to LHC experimental conditions is shown, demonstrating the superiority of the defect engineered silicon. Microscopic aspects of damage effects are also discussed, including differences due to charged and neutral hadron irradiation.
2001
466
308
326
G Lindström;M Ahmed;S Albergo;P Allport;D Anderson;L Andricek;M.M Angarano;V Augelli;N Bacchetta;P Bartalini;R Bates;U Biggeri;G.M Bilei;...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/657277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 385
  • ???jsp.display-item.citation.isi??? 339
social impact