The pioneering computer simulations of the energy relaxation mechanisms performed by Fermi, Pasta, and Ulam (FPU) can be considered as the first attempt of understanding energy relaxation and thus heat conduction in lattices of nonlinear oscillators. In this paper we describe the most recent achievements about the divergence of heat conductivity with the system size in one-dimensional (1D) and two-dimensional FPU-like lattices. The anomalous behavior is particularly evident at low energies, where it is enhanced by the quasiharmonic character of the lattice dynamics. Remarkably, anomalies persist also in the strongly chaotic region where long-time tails develop in the current autocorrelation function. A modal analysis of the 1D case is also presented in order to gain further insight about the role played by boundary conditions.

Studies of thermal conductivity in Fermi-Pasta-Ulam like lattices / S. Lepri; R. Livi; A. Politi. - In: CHAOS. - ISSN 1054-1500. - STAMPA. - 15:(2005), pp. 015118-015126.

Studies of thermal conductivity in Fermi-Pasta-Ulam like lattices

LIVI, ROBERTO;
2005

Abstract

The pioneering computer simulations of the energy relaxation mechanisms performed by Fermi, Pasta, and Ulam (FPU) can be considered as the first attempt of understanding energy relaxation and thus heat conduction in lattices of nonlinear oscillators. In this paper we describe the most recent achievements about the divergence of heat conductivity with the system size in one-dimensional (1D) and two-dimensional FPU-like lattices. The anomalous behavior is particularly evident at low energies, where it is enhanced by the quasiharmonic character of the lattice dynamics. Remarkably, anomalies persist also in the strongly chaotic region where long-time tails develop in the current autocorrelation function. A modal analysis of the 1D case is also presented in order to gain further insight about the role played by boundary conditions.
2005
15
015118
015126
S. Lepri; R. Livi; A. Politi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/686536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact