We study the spectrum of the HamiltonianH onl 2(Zopf) given by (Hpsgr)(n)=psgr(n+1)+psgr(n–1)+V(n)psgr(n) with the hierarchical (ultrametric) potentialV(2 m (2l+1))=lambda(1–R m )/(1–R), corresponding to 1-, 2-, and 3-dimensional Coulomb potentials for 0R<>R=1 andR>1, respectively, in a suitably chosen valuation metric. We prove that the spectrum is a Cantor set and gaps open at the eigenvaluese n (1)e n (2)<>e n (2 n –1) of the Dirichlet problemHpsgr=Epsgr, psgr(0)=psgr(2 n )=0,ngE1. In the gap opening ate n (k) the integrated density of states takes on the valuek/2 n . The spectrum is purely singular continuous forRgE1 when the potential is unbounded, and the Lyapunov exponent gamma vanishes in the spectrum. The spectrum is purely continuous forR<1 in="">sgr(H)cap[–2, 2] and gamma=0 here, but one cannot exclude the presence of eigenvalues near the border of the spectrum. We also propose an explicit formula for the Green's function.

Cantor spectrum and singular continuity for a hierarchical hamiltonian / H. Kunz; R. Livi; A. Suto. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 122:(1989), pp. 643-679.

Cantor spectrum and singular continuity for a hierarchical hamiltonian

LIVI, ROBERTO;
1989

Abstract

We study the spectrum of the HamiltonianH onl 2(Zopf) given by (Hpsgr)(n)=psgr(n+1)+psgr(n–1)+V(n)psgr(n) with the hierarchical (ultrametric) potentialV(2 m (2l+1))=lambda(1–R m )/(1–R), corresponding to 1-, 2-, and 3-dimensional Coulomb potentials for 0R<>R=1 andR>1, respectively, in a suitably chosen valuation metric. We prove that the spectrum is a Cantor set and gaps open at the eigenvaluese n (1)e n (2)<>e n (2 n –1) of the Dirichlet problemHpsgr=Epsgr, psgr(0)=psgr(2 n )=0,ngE1. In the gap opening ate n (k) the integrated density of states takes on the valuek/2 n . The spectrum is purely singular continuous forRgE1 when the potential is unbounded, and the Lyapunov exponent gamma vanishes in the spectrum. The spectrum is purely continuous forR<1 in="">sgr(H)cap[–2, 2] and gamma=0 here, but one cannot exclude the presence of eigenvalues near the border of the spectrum. We also propose an explicit formula for the Green's function.
1989
122
643
679
H. Kunz; R. Livi; A. Suto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/686933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact