Fibroblast growth factor (FGF)-1 lacks a classical signal sequence to direct its secretion yet utilizes high affinity cell surface receptors to signal its heparin-dependent angiogenic and neurotrophic activities. We have previously reported that FGF-1 is released in response to temperature stress as a latent homodimer through a pathway that is potentiated by the Golgi inhibitor, brefeldin A (Jackson, A., Tarantini, F., Gamble, S., Friedman, S., and Maciag, T. (1995) J. Biol. Chem. 270, 33-36). In an attempt to further characterize this unconventional secretion mechanism, we sought to define the Cys residue(s) critical for FGF-1 dimer formation and release and to determine whether FGF-1 can associate with known phospholipid components of organelle or plasma membranes, which may be disturbed by brefeldin A. Utilizing FGF-1 Cys mutants, we were able to demonstrate that residue Cys30 is critical for FGF-1 release in response to heat shock. In addition, using solid phase phospholipid binding assays we demonstrate that FGF-1 is able to specifically associate with phosphatidylserine (PS). Heparin inhibits the association between FGF-1 and PS, and synthetic peptide competition assays suggest that the PS-binding domain of FGF-1 lies between residues 114 and 137. These observations indicate that FGF-1 may be able to associate with the PS component of organelle and/or plasma membranes and that the domains responsible for FGF-1 homodimer formation and PS binding are structurally distinct.

The cysteine residue responsible for the release of fibroblast growth factor-1 residues in a domain independent of the domain for phosphatidylserine binding / Tarantini F;Gamble S;Jackson A;Maciag T. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - STAMPA. - 270:(1995), pp. 29039-29042.

The cysteine residue responsible for the release of fibroblast growth factor-1 residues in a domain independent of the domain for phosphatidylserine binding.

TARANTINI, FRANCESCA;
1995

Abstract

Fibroblast growth factor (FGF)-1 lacks a classical signal sequence to direct its secretion yet utilizes high affinity cell surface receptors to signal its heparin-dependent angiogenic and neurotrophic activities. We have previously reported that FGF-1 is released in response to temperature stress as a latent homodimer through a pathway that is potentiated by the Golgi inhibitor, brefeldin A (Jackson, A., Tarantini, F., Gamble, S., Friedman, S., and Maciag, T. (1995) J. Biol. Chem. 270, 33-36). In an attempt to further characterize this unconventional secretion mechanism, we sought to define the Cys residue(s) critical for FGF-1 dimer formation and release and to determine whether FGF-1 can associate with known phospholipid components of organelle or plasma membranes, which may be disturbed by brefeldin A. Utilizing FGF-1 Cys mutants, we were able to demonstrate that residue Cys30 is critical for FGF-1 release in response to heat shock. In addition, using solid phase phospholipid binding assays we demonstrate that FGF-1 is able to specifically associate with phosphatidylserine (PS). Heparin inhibits the association between FGF-1 and PS, and synthetic peptide competition assays suggest that the PS-binding domain of FGF-1 lies between residues 114 and 137. These observations indicate that FGF-1 may be able to associate with the PS component of organelle and/or plasma membranes and that the domains responsible for FGF-1 homodimer formation and PS binding are structurally distinct.
1995
270
29039
29042
Tarantini F;Gamble S;Jackson A;Maciag T
File in questo prodotto:
File Dimensione Formato  
J Biol Chem Communication.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 97.54 kB
Formato Adobe PDF
97.54 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/697527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 54
social impact