Purpose: We aimed to investigate the effects of different apparent gravities (μ g, 1 g and 2 g) produced by large gradient high magnetic field (LGHMF) on human preosteoclast FLG29.1 cells. Materials and methods: FLG29.1 cells were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium. Cells were exposed to LGHMF for 72 h. On culture day 1, 2, 3, cell proliferation was detected by 3-(4,5)-dimethylthiahi-azo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) method. On day 3, cell apoptosis and necrosis were assayed by Hoechst and propidium iodide (PI) staining. After cells were exposed to LGHMF for 72 h with the induction of 12-o-tetradecanoylphorbol 13-acetate (TPA), Tartrate-Resistant Acid Phosphatase (TRAP) positive cells and nitric oxide (NO) release were detected by TRAP staining and Griess method, respectively. Intracellular TRAP activity was measured using nitrophenylphosphate (pNPP) as the substrate. Results: MTT detection revealed that compared to control, FLG 29.1 cell proliferation in the μ g and 2 g groups were promoted. However, there is no obvious difference between the 1 g and control groups. Hoechst-PI staining showed that LGHMF promoted cell apoptosis and necrosis, especially in the 2 g group. Exposure to LGHMF inhibited the NO concentration of supernatant. Both the TRAP activity and the number of TRAP positive cells were higher in cells of μ g group than those in 2 g group. In the 1 g group, they were decreased significantly compared to control. Conclusions: These findings indicate that LGHMF could directly affect human preosteoclast FLG29.1 cells survival and differentiation. High magnetic flux inhibited osteoclasts formation and differentiation while reduced apparent gravity enhanced osteoclastogenesis.

Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells / S. Di; Z. Tian; A. Qian; J. Li; J. Wu; Z. Wang; D. Zhang; D. Yin; M.L. Brandi; P. Shang. - In: INTERNATIONAL JOURNAL OF RADIATION BIOLOGY. - ISSN 0955-3002. - ELETTRONICO. - 88:(2012), pp. 806-813. [10.3109/09553002.2012.698365]

Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells.

BRANDI, MARIA LUISA;
2012

Abstract

Purpose: We aimed to investigate the effects of different apparent gravities (μ g, 1 g and 2 g) produced by large gradient high magnetic field (LGHMF) on human preosteoclast FLG29.1 cells. Materials and methods: FLG29.1 cells were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium. Cells were exposed to LGHMF for 72 h. On culture day 1, 2, 3, cell proliferation was detected by 3-(4,5)-dimethylthiahi-azo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) method. On day 3, cell apoptosis and necrosis were assayed by Hoechst and propidium iodide (PI) staining. After cells were exposed to LGHMF for 72 h with the induction of 12-o-tetradecanoylphorbol 13-acetate (TPA), Tartrate-Resistant Acid Phosphatase (TRAP) positive cells and nitric oxide (NO) release were detected by TRAP staining and Griess method, respectively. Intracellular TRAP activity was measured using nitrophenylphosphate (pNPP) as the substrate. Results: MTT detection revealed that compared to control, FLG 29.1 cell proliferation in the μ g and 2 g groups were promoted. However, there is no obvious difference between the 1 g and control groups. Hoechst-PI staining showed that LGHMF promoted cell apoptosis and necrosis, especially in the 2 g group. Exposure to LGHMF inhibited the NO concentration of supernatant. Both the TRAP activity and the number of TRAP positive cells were higher in cells of μ g group than those in 2 g group. In the 1 g group, they were decreased significantly compared to control. Conclusions: These findings indicate that LGHMF could directly affect human preosteoclast FLG29.1 cells survival and differentiation. High magnetic flux inhibited osteoclasts formation and differentiation while reduced apparent gravity enhanced osteoclastogenesis.
2012
88
806
813
S. Di; Z. Tian; A. Qian; J. Li; J. Wu; Z. Wang; D. Zhang; D. Yin; M.L. Brandi; P. Shang
File in questo prodotto:
File Dimensione Formato  
Large gradient.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 496.8 kB
Formato Adobe PDF
496.8 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/771133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact