Consider a weighted graph G with n vertices, numbered by the set {1, ..., n}. For any path p in G, we call w_G(p) the sum of the weights of the edges of the path and we define the multiset D_i,j(G) = {w_G(p)| p simple path between i and j} We establish a criterion to say when, given a multisubset of R, there exists a weighted complete graph G such that the multisubset is equal to D_i,j (G) for some i, j vertices of G. Besides we establish a criterion to say when, given for any i, j ∈ {1, ..., n} a multisubset of R, D_i,j , there exists a weighted complete graph G with vertices {1, ..., n} such that D_i,j(G) = D_i,j for any i, j.

On the weights of simple paths in weighted complete graphs / E. Rubei. - In: INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS. - ISSN 0019-5588. - STAMPA. - 44 (4):(2013), pp. 511-525. [10.1007/s13226-013-0027-6]

On the weights of simple paths in weighted complete graphs

RUBEI, ELENA
2013

Abstract

Consider a weighted graph G with n vertices, numbered by the set {1, ..., n}. For any path p in G, we call w_G(p) the sum of the weights of the edges of the path and we define the multiset D_i,j(G) = {w_G(p)| p simple path between i and j} We establish a criterion to say when, given a multisubset of R, there exists a weighted complete graph G such that the multisubset is equal to D_i,j (G) for some i, j vertices of G. Besides we establish a criterion to say when, given for any i, j ∈ {1, ..., n} a multisubset of R, D_i,j , there exists a weighted complete graph G with vertices {1, ..., n} such that D_i,j(G) = D_i,j for any i, j.
2013
44 (4)
511
525
E. Rubei
File in questo prodotto:
File Dimensione Formato  
gweights.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 113.38 kB
Formato Adobe PDF
113.38 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/772601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact