We investigate the stability of some inequalities of isoperimetric type related to Monge–Ampère functionals. In particular, firstly we prove the stability of a reverse Faber–Krahn inequality for the Monge–Ampère eigenvalue and its generalization. Then we give a stability result for the Brunn–Minkowski inequality and for a consequent Urysohn’s type inequality for the so-called n-torsional rigidity, a natural extension of the usual torsional rigidity.
Stability of isoperimetric type inequalities for some Monge–Ampère functionals / D. Ghilli; P. Salani. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 193:(2014), pp. 643-661. [10.1007/s10231-012-0295-5]
Stability of isoperimetric type inequalities for some Monge–Ampère functionals
SALANI, PAOLO
2014
Abstract
We investigate the stability of some inequalities of isoperimetric type related to Monge–Ampère functionals. In particular, firstly we prove the stability of a reverse Faber–Krahn inequality for the Monge–Ampère eigenvalue and its generalization. Then we give a stability result for the Brunn–Minkowski inequality and for a consequent Urysohn’s type inequality for the so-called n-torsional rigidity, a natural extension of the usual torsional rigidity.File | Dimensione | Formato | |
---|---|---|---|
PUBBLICATO.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
DRM non definito
Dimensione
484.06 kB
Formato
Adobe PDF
|
484.06 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.