Using the concept of the Boolean derivative we study local damage spreading for one-dimensional elementary cellular automata and define their maximal Lyapunov exponent. A random matrix approximation describes quite well the behavior of “chaotic” cellular automata and predicts a directed percolation-type phase transition. After the introduction of a small amount of noise elementary cellular automata reveal the same type of transition.

Damage spreading and Lyapunov exponents in cellular automata / F. Bagnoli;R. Rechtman;S. Ruffo. - In: PHYSICS LETTERS A. - ISSN 0375-9601. - STAMPA. - 172:(1992), pp. 34-38. [10.1016/0375-9601(92)90185-O]

Damage spreading and Lyapunov exponents in cellular automata

BAGNOLI, FRANCO;RUFFO, STEFANO
1992

Abstract

Using the concept of the Boolean derivative we study local damage spreading for one-dimensional elementary cellular automata and define their maximal Lyapunov exponent. A random matrix approximation describes quite well the behavior of “chaotic” cellular automata and predicts a directed percolation-type phase transition. After the introduction of a small amount of noise elementary cellular automata reveal the same type of transition.
1992
172
34
38
F. Bagnoli;R. Rechtman;S. Ruffo
File in questo prodotto:
File Dimensione Formato  
BagnoliRechtmanRuffo-DamageSpreadingLyapunovExponentsCA-PhysLettA172.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 617.17 kB
Formato Adobe PDF
617.17 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/774374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 67
social impact