Using the concept of the Boolean derivative we study local damage spreading for one-dimensional elementary cellular automata and define their maximal Lyapunov exponent. A random matrix approximation describes quite well the behavior of “chaotic” cellular automata and predicts a directed percolation-type phase transition. After the introduction of a small amount of noise elementary cellular automata reveal the same type of transition.
Damage spreading and Lyapunov exponents in cellular automata / F. Bagnoli;R. Rechtman;S. Ruffo. - In: PHYSICS LETTERS A. - ISSN 0375-9601. - STAMPA. - 172:(1992), pp. 34-38. [10.1016/0375-9601(92)90185-O]
Damage spreading and Lyapunov exponents in cellular automata
BAGNOLI, FRANCO;RUFFO, STEFANO
1992
Abstract
Using the concept of the Boolean derivative we study local damage spreading for one-dimensional elementary cellular automata and define their maximal Lyapunov exponent. A random matrix approximation describes quite well the behavior of “chaotic” cellular automata and predicts a directed percolation-type phase transition. After the introduction of a small amount of noise elementary cellular automata reveal the same type of transition.File | Dimensione | Formato | |
---|---|---|---|
BagnoliRechtmanRuffo-DamageSpreadingLyapunovExponentsCA-PhysLettA172.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
617.17 kB
Formato
Adobe PDF
|
617.17 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.