Abstract: Previous investigations have shown that the signal transducers and activators of transcription (STATs) signaling pathway play an important role in the modulation of apoptosis after ischemia and reperfusion. The mechanism for this enhanced cardioprotection is unknown, but we believe that alterations STATs may play a role.To investigate this hypothesis, we examined the effects of angiotension II type 1 (AT1) and angiotension II type 2 (AT2) receptor antagonist added to cardioplegia on the downstream response of different STATs, connected with proinflammatory pathways (STAT2, STAT5) and prohypertrophic and antiapoptotic pathways (STAT3). Isolated, nonworking hearts (n = 3 per group) from neonatal rats were perfused aerobically (4°C) for 20 min in the Langendorff mode with the modified St. Thomas’ Hospital no. 2 (MSTH2) cardioplegic solution (Group 1), the MSTH2 cardioplegic solution + AT1 receptor antagonist (Group 2), and MSTH2 cardioplegic solution + AT2 receptor antagonist (Group 3). Thus, myocytes were isolated by enzymatic digestion, and STAT2, STAT3, and STAT5 were investigated in Western blot studies. Times to arrest after cardioplegia were 8–12 s for all groups. Total cardioplegia delivery volume was about 300 mL for the 20 min. Perfusion with the MSTH2 cardioplegic solution supplemented with AT1 receptor antagonist (Group 2) induced a significant reduction in STAT2 and STAT5 tyrosine phosphorylation (-58 and -63%, respectively, vs. Group 1, P < 0.05). Conversely, STAT2 and STAT5 activation were unaffected by perfusion with the MSTH2 cardioplegic solution supplemented with AT2 receptor antagonist (Group 3). The decreased activation of STAT2 and STAT5 observed in Group 2 was accompanied by reduction of interleukin-1b (-57% in Group 2 vs. Group 1, P < 0.05). There were no significant differences in STAT3 phosphorylation among all groups. Only the addition of AT1 receptor antagonist to MSTH2 cardioplegia significantly decreases the inflammatory response of the neonatal rat cardiomyocytes without affecting antiapoptotic influence provided by tyrosine phosphorylation of STAT3.AT1 receptor antagonist added to cardioplegia represents an additional modality for enhancing myocardial protection during cardiac surgery and could contribute to optimize the ischemia tolerance of the pediatric heart.

Cardioplegia and angiotensin II receptor antagonists modulate signal transducers and activators of transcription activation in neonatal rat myocytes / Lucchese G; Cambi GE; De Rita F; Faggian G; Mazzucco A; Modesti PA; Luciani GB.. - In: ARTIFICIAL ORGANS. - ISSN 0160-564X. - STAMPA. - 2011:(2011), pp. 1075-1081. [10.1111/j.1525-1594.2011.01386.x.]

Cardioplegia and angiotensin II receptor antagonists modulate signal transducers and activators of transcription activation in neonatal rat myocytes.

MODESTI, PIETRO AMEDEO;
2011

Abstract

Abstract: Previous investigations have shown that the signal transducers and activators of transcription (STATs) signaling pathway play an important role in the modulation of apoptosis after ischemia and reperfusion. The mechanism for this enhanced cardioprotection is unknown, but we believe that alterations STATs may play a role.To investigate this hypothesis, we examined the effects of angiotension II type 1 (AT1) and angiotension II type 2 (AT2) receptor antagonist added to cardioplegia on the downstream response of different STATs, connected with proinflammatory pathways (STAT2, STAT5) and prohypertrophic and antiapoptotic pathways (STAT3). Isolated, nonworking hearts (n = 3 per group) from neonatal rats were perfused aerobically (4°C) for 20 min in the Langendorff mode with the modified St. Thomas’ Hospital no. 2 (MSTH2) cardioplegic solution (Group 1), the MSTH2 cardioplegic solution + AT1 receptor antagonist (Group 2), and MSTH2 cardioplegic solution + AT2 receptor antagonist (Group 3). Thus, myocytes were isolated by enzymatic digestion, and STAT2, STAT3, and STAT5 were investigated in Western blot studies. Times to arrest after cardioplegia were 8–12 s for all groups. Total cardioplegia delivery volume was about 300 mL for the 20 min. Perfusion with the MSTH2 cardioplegic solution supplemented with AT1 receptor antagonist (Group 2) induced a significant reduction in STAT2 and STAT5 tyrosine phosphorylation (-58 and -63%, respectively, vs. Group 1, P < 0.05). Conversely, STAT2 and STAT5 activation were unaffected by perfusion with the MSTH2 cardioplegic solution supplemented with AT2 receptor antagonist (Group 3). The decreased activation of STAT2 and STAT5 observed in Group 2 was accompanied by reduction of interleukin-1b (-57% in Group 2 vs. Group 1, P < 0.05). There were no significant differences in STAT3 phosphorylation among all groups. Only the addition of AT1 receptor antagonist to MSTH2 cardioplegia significantly decreases the inflammatory response of the neonatal rat cardiomyocytes without affecting antiapoptotic influence provided by tyrosine phosphorylation of STAT3.AT1 receptor antagonist added to cardioplegia represents an additional modality for enhancing myocardial protection during cardiac surgery and could contribute to optimize the ischemia tolerance of the pediatric heart.
2011
2011
1075
1081
Lucchese G; Cambi GE; De Rita F; Faggian G; Mazzucco A; Modesti PA; Luciani GB.
File in questo prodotto:
File Dimensione Formato  
Artif Organs, Vol. 35, No. 11, 2011.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 228.86 kB
Formato Adobe PDF
228.86 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/777205
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact