This study is dedicated to the assessment of the possibility of replacing fossil fuels with renewable energy as a source of power in modern agriculture. We examined the use of a completely sustainable agricultural mechanization system based on a renewable energy system and a battery powered, multi-purpose agricultural vehicle. This assessment is based on the RAMseS project, financed by the European Commission under the 6th Framework Program, which has led to the actual manufacturing of the system, at present being tested in Lebanon. In the present study, we assess the environmental and economic performance of the RAMseS system. We evaluate the external costs by means of a specific model that takes into account the life-cycle cost (LCC), economical indexes, and life-cycle emissions for the vehicle during its life span. The results are compared with those of a standard vehicle based on the internal combustion engine (ICEV). The results show that the RAMseS system can avoid the emission of about 23 ton of CO2equ per year. The life cycle cost (LCC) assessment using MATLAB software shows that the LCC for the RAMseS vehicle and the ICEV are the same for a fuel unit price (pf) of 1.45 €/L. Finally, we show that almost 52 % of the RAMseS LCC is due to the batteries of the electric vehicle. A 50% decrease in batteries unit cost would cause the LCC of two system to be the same at a fuel cost of 0.8 €/L. The final result is that the RAMseS system remains—at present— marginally more expensive than an equivalent system based on conventional fuels and internal combustion engines. Nevertheless, with the gradual depletion of fossil fuels, all electric agricultural mechanized system provide an alternative solution that is dependent only on renewable energy and recyclable resources.

Sustainability in Agricultural Mechanization: Assessment of a Combined Photovoltaic and Electric Multipurpose System for Farmers / H. Mousazadeh; A. Keyhani; H. Mobli; U. Bardi; T. El Asmar. - In: SUSTAINABILITY. - ISSN 2071-1050. - STAMPA. - 1(4):(2009), pp. 1042-1068. [10.3390/su1041042]

Sustainability in Agricultural Mechanization: Assessment of a Combined Photovoltaic and Electric Multipurpose System for Farmers

BARDI, UGO;
2009

Abstract

This study is dedicated to the assessment of the possibility of replacing fossil fuels with renewable energy as a source of power in modern agriculture. We examined the use of a completely sustainable agricultural mechanization system based on a renewable energy system and a battery powered, multi-purpose agricultural vehicle. This assessment is based on the RAMseS project, financed by the European Commission under the 6th Framework Program, which has led to the actual manufacturing of the system, at present being tested in Lebanon. In the present study, we assess the environmental and economic performance of the RAMseS system. We evaluate the external costs by means of a specific model that takes into account the life-cycle cost (LCC), economical indexes, and life-cycle emissions for the vehicle during its life span. The results are compared with those of a standard vehicle based on the internal combustion engine (ICEV). The results show that the RAMseS system can avoid the emission of about 23 ton of CO2equ per year. The life cycle cost (LCC) assessment using MATLAB software shows that the LCC for the RAMseS vehicle and the ICEV are the same for a fuel unit price (pf) of 1.45 €/L. Finally, we show that almost 52 % of the RAMseS LCC is due to the batteries of the electric vehicle. A 50% decrease in batteries unit cost would cause the LCC of two system to be the same at a fuel cost of 0.8 €/L. The final result is that the RAMseS system remains—at present— marginally more expensive than an equivalent system based on conventional fuels and internal combustion engines. Nevertheless, with the gradual depletion of fossil fuels, all electric agricultural mechanized system provide an alternative solution that is dependent only on renewable energy and recyclable resources.
2009
1(4)
1042
1068
H. Mousazadeh; A. Keyhani; H. Mobli; U. Bardi; T. El Asmar
File in questo prodotto:
File Dimensione Formato  
sustainability-01-01042.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 671.59 kB
Formato Adobe PDF
671.59 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/778051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact