We show that for a manifold with non-negative curvature one obtains a collection of concave functions, special cases of which are the concavity of the length of a Jacobi field in dimension 2, and the concavity of the volume in general. We use these functions to show that there are many cohomogeneity one manifolds which do not carry an analytic invariant metric with non-negative curvature. This implies in particular, that one of the candidates in [GWZ] does not carry an invariant metric with positive curvature.

CONCAVITY AND RIGIDITY IN NON-NEGATIVE CURVATURE / L. VERDIANI; W. ZILLER. - In: JOURNAL OF DIFFERENTIAL GEOMETRY. - ISSN 0022-040X. - STAMPA. - 97:(2014), pp. 349-375.

CONCAVITY AND RIGIDITY IN NON-NEGATIVE CURVATURE

VERDIANI, LUIGI;
2014

Abstract

We show that for a manifold with non-negative curvature one obtains a collection of concave functions, special cases of which are the concavity of the length of a Jacobi field in dimension 2, and the concavity of the volume in general. We use these functions to show that there are many cohomogeneity one manifolds which do not carry an analytic invariant metric with non-negative curvature. This implies in particular, that one of the candidates in [GWZ] does not carry an invariant metric with positive curvature.
2014
97
349
375
L. VERDIANI; W. ZILLER
File in questo prodotto:
File Dimensione Formato  
4026-final.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 243.6 kB
Formato Adobe PDF
243.6 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/778736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact