An approach is outlined to the equilibrium in fiber reinforced materials in which the fibers are modelled as curves or lines with concentrated material properties. The system of forces representing the interaction of the fibers with the bulk matter is analysed and equilibrium of forces is derived from global laws. The displacements of the bulk matter are assumed to have continuous extension to the fibers. This forces the set of admissible deformations superquadratically integrable. This in turn forces the energy of the bulk of superquadratic growth. The material of the bulk matrix therefore cannot be linearly elastic. The energy of fibers can have a slower growth and can be quadratic. A formal set of assumptions is given under which an equilibrium state of minimum energy exist in the given external conditions. A weak form of equilibrium equations is derived for this equilibrium state. An explicitly calculable axisymmetric example is presented with an isotropic and quadratic energy of the matrix (linear elasticity) and linearly stretchable fiber. Since the superquadratic growth assumption is not satisfied, some peculiar features of the solution arise, such as the infinite limit of the radial displacement near the fiber. Nevertheless, from the obtained solution we can compute the normal forcein the fiber and the shear stress at the interface.
A direct approach to fiber and membrane reinforced bodies. Part I. Stress concentrated on curves for modelling fiber reinforced materials / Massimiliano Lucchesi; Miroslav Silhavy; Nicola Zani. - In: CONTINUUM MECHANICS AND THERMODYNAMICS. - ISSN 0935-1175. - STAMPA. - 25:(2013), pp. 537-588. [10.1007/s00161-012-0285-2]
A direct approach to fiber and membrane reinforced bodies. Part I. Stress concentrated on curves for modelling fiber reinforced materials
LUCCHESI, MASSIMILIANO;ZANI, NICOLA
2013
Abstract
An approach is outlined to the equilibrium in fiber reinforced materials in which the fibers are modelled as curves or lines with concentrated material properties. The system of forces representing the interaction of the fibers with the bulk matter is analysed and equilibrium of forces is derived from global laws. The displacements of the bulk matter are assumed to have continuous extension to the fibers. This forces the set of admissible deformations superquadratically integrable. This in turn forces the energy of the bulk of superquadratic growth. The material of the bulk matrix therefore cannot be linearly elastic. The energy of fibers can have a slower growth and can be quadratic. A formal set of assumptions is given under which an equilibrium state of minimum energy exist in the given external conditions. A weak form of equilibrium equations is derived for this equilibrium state. An explicitly calculable axisymmetric example is presented with an isotropic and quadratic energy of the matrix (linear elasticity) and linearly stretchable fiber. Since the superquadratic growth assumption is not satisfied, some peculiar features of the solution arise, such as the infinite limit of the radial displacement near the fiber. Nevertheless, from the obtained solution we can compute the normal forcein the fiber and the shear stress at the interface.File | Dimensione | Formato | |
---|---|---|---|
Fiber_13.pdf
Accesso chiuso
Tipologia:
Altro
Licenza:
Tutti i diritti riservati
Dimensione
444.26 kB
Formato
Adobe PDF
|
444.26 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.