Major depressive disorder (MDD), a pathology characterized by mood and neurovegetative disturbances, depends on a multi-factorial contribution of individual predisposition (e.g., diminished serotonergic transmission) and environmental factors (e.g., neonatal abuse or neglect). Despite its female-biased prevalence, MDD basic research has mainly focused on male rodents. Most of present models of depression are also devalued due to the fact that they typically address only one of the aforementioned pathogenetic factors. In this paper we first describe the basic principles behind mouse model development and evaluation and then articulate that current models of depression are intrinsically devalued due to poor construct and/or external validity. We then report a first attempt to overcome this limitation through the design of a mouse model in which the genetic and the environmental components of early risk factors for depression are mimicked together. Environmental stress is mimicked through the supplementation of corticosterone in the maternal drinking water while biological predisposition is mimicked through maternal access to an L-tryptophan (the serotonin precursor) deficient diet during the first week of lactation. CD1 dams and their offspring exposed to the L-tryptophan deficient diet (T) and to corticosterone (80 mg/l; C) were compared to animal facility reared (AFR) subjects. T and C mice served as intermediate reference groups. Adolescent TC offspring, compared to AFR mice, showed decreased time spent floating in the forced-swim test and increased time spent in the open sectors of an elevated 0-maze. Adult TC offspring showed reduced preference for novelty, decreased breakpoints in the progressive ratio operant procedure and major alterations in central BDNF levels and altered HPA regulation. The route of administration and the possibility to control the independent variables predisposing to depressive-like symptoms disclose novel avenues towards the development of animal models with increased external and construct validity. Furthermore, the observation that, compared to adult subjects, adolescent mice display an opposite profile suggests that peri-pubertal developmental processes may interact with neonatal predispositions to calibrate the adult abnormal phenotype.

Effects of maternal l-tryptophan depletion and corticosterone administration on neurobehavioral adjustments in mouse dams and their adolescent and adult daughters / Francesca Zoratto;Alessandra Berry;Francesca Anzidei;Marco Fiore;Enrico Alleva;Giovanni Laviola;Simone Macrì. - In: PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY. - ISSN 0278-5846. - ELETTRONICO. - 35:(2011), pp. 1479-1492. [10.1016/j.pnpbp.2011.02.016]

Effects of maternal l-tryptophan depletion and corticosterone administration on neurobehavioral adjustments in mouse dams and their adolescent and adult daughters

ZORATTO, FRANCESCA;
2011

Abstract

Major depressive disorder (MDD), a pathology characterized by mood and neurovegetative disturbances, depends on a multi-factorial contribution of individual predisposition (e.g., diminished serotonergic transmission) and environmental factors (e.g., neonatal abuse or neglect). Despite its female-biased prevalence, MDD basic research has mainly focused on male rodents. Most of present models of depression are also devalued due to the fact that they typically address only one of the aforementioned pathogenetic factors. In this paper we first describe the basic principles behind mouse model development and evaluation and then articulate that current models of depression are intrinsically devalued due to poor construct and/or external validity. We then report a first attempt to overcome this limitation through the design of a mouse model in which the genetic and the environmental components of early risk factors for depression are mimicked together. Environmental stress is mimicked through the supplementation of corticosterone in the maternal drinking water while biological predisposition is mimicked through maternal access to an L-tryptophan (the serotonin precursor) deficient diet during the first week of lactation. CD1 dams and their offspring exposed to the L-tryptophan deficient diet (T) and to corticosterone (80 mg/l; C) were compared to animal facility reared (AFR) subjects. T and C mice served as intermediate reference groups. Adolescent TC offspring, compared to AFR mice, showed decreased time spent floating in the forced-swim test and increased time spent in the open sectors of an elevated 0-maze. Adult TC offspring showed reduced preference for novelty, decreased breakpoints in the progressive ratio operant procedure and major alterations in central BDNF levels and altered HPA regulation. The route of administration and the possibility to control the independent variables predisposing to depressive-like symptoms disclose novel avenues towards the development of animal models with increased external and construct validity. Furthermore, the observation that, compared to adult subjects, adolescent mice display an opposite profile suggests that peri-pubertal developmental processes may interact with neonatal predispositions to calibrate the adult abnormal phenotype.
2011
35
1479
1492
Francesca Zoratto;Alessandra Berry;Francesca Anzidei;Marco Fiore;Enrico Alleva;Giovanni Laviola;Simone Macrì
File in questo prodotto:
File Dimensione Formato  
Zoratto et al_2011_PNPPBP.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 542.79 kB
Formato Adobe PDF
542.79 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/806281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact