H-Ras oncogene requires deregulation of additional oncogenes or inactivation of tumor suppressor proteins to increase cell proliferation rate and transform cells. In fact, the expression of the constitutively activated H-RasV12 induces cell growth arrest and premature senescence, which act like barriers in pre-neoplastic lesions. In our experimental model, human fibroblasts transfected with H-RasV12 show a dramatic modification of morphology. H-RasV12 expressing cells also show premature senescence followed by cell death, induced by autophagy and apoptosis. In this context, we provide evidence that in H-RasV12 expressing cells, the premature senescence is associated with cellular redox imbalance as well as with altered post-translation protein modification. In particular, redox imbalance is due to a strong reduction of total antioxidant capacity, and significant decrease of glutathione level. As the reversible addition of glutathione to cysteinyl residues of proteins is an important post-translational regulative modification, we investigated S-glutathionylation in cells expressing active H-Ras. In this contest we observed different S-glutathionylation patterns in control and H-RasV12 expressing cells. Particularly, the GAPDH enzyme showed S-glutathionylation increase and significant enzyme activity depletion in H-Ras V12 cells. In conclusion, we proposed that antioxidant defense reduction, glutathione depletion and subsequent modification of S-glutathionylation of target proteins contribute to arrest cell growth, leading to death of fibroblasts expressing constitutively active H-Ras oncogene, thus acting as oncogenic barriers that obstacle the progression of cell transformation.

Cellular Redox Imbalance and Changes of Protein Sglutathionylation Patterns Are Associated with Senescence Induced by Oncogenic H-Ras / Tatiana Armeni; Luisa Ercolani; Lorena Urbanelli; Alessandro Magini; Francesca Magherini; Armanda Pugnaloni; Francesco Piva; Alessandra Modesti; Carla Emiliani; Giovanni Principato. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 7:(2012), pp. 0-0.

Cellular Redox Imbalance and Changes of Protein Sglutathionylation Patterns Are Associated with Senescence Induced by Oncogenic H-Ras

MAGHERINI, FRANCESCA;MODESTI, ALESSANDRA;
2012

Abstract

H-Ras oncogene requires deregulation of additional oncogenes or inactivation of tumor suppressor proteins to increase cell proliferation rate and transform cells. In fact, the expression of the constitutively activated H-RasV12 induces cell growth arrest and premature senescence, which act like barriers in pre-neoplastic lesions. In our experimental model, human fibroblasts transfected with H-RasV12 show a dramatic modification of morphology. H-RasV12 expressing cells also show premature senescence followed by cell death, induced by autophagy and apoptosis. In this context, we provide evidence that in H-RasV12 expressing cells, the premature senescence is associated with cellular redox imbalance as well as with altered post-translation protein modification. In particular, redox imbalance is due to a strong reduction of total antioxidant capacity, and significant decrease of glutathione level. As the reversible addition of glutathione to cysteinyl residues of proteins is an important post-translational regulative modification, we investigated S-glutathionylation in cells expressing active H-Ras. In this contest we observed different S-glutathionylation patterns in control and H-RasV12 expressing cells. Particularly, the GAPDH enzyme showed S-glutathionylation increase and significant enzyme activity depletion in H-Ras V12 cells. In conclusion, we proposed that antioxidant defense reduction, glutathione depletion and subsequent modification of S-glutathionylation of target proteins contribute to arrest cell growth, leading to death of fibroblasts expressing constitutively active H-Ras oncogene, thus acting as oncogenic barriers that obstacle the progression of cell transformation.
2012
7
0
0
Tatiana Armeni; Luisa Ercolani; Lorena Urbanelli; Alessandro Magini; Francesca Magherini; Armanda Pugnaloni; Francesco Piva; Alessandra Modesti; Carla Emiliani; Giovanni Principato
File in questo prodotto:
File Dimensione Formato  
Cellular Redox Imbalance.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/820081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact