Each genus of small apes has a highly distinctive karyotype (karyomorph) at every level of cytogenetic analysis. Early workers using classical staining and banding had problems integrating the karyolocial data with that of other primates. Chromosome painting allowed syntenic homology maps to be constructed for each of the four karyomorphs (2n = 38, 44, 50 and 52). They revealed that the great apes and Old World monkeys had strongly conserved karyotypes while those of small apes were highly rearranged. However, they provided contradictory phylogenetic results to other bio-molecular tree of small ape evolution. More recently BAC-FISH investigations using a panel of about 900 BACs defined each breakpoint by spanning or flanking BAC clones The syntenic map was refined and now includes small segments of homology which had previously gone undected, marker order (synteny block orientation) and the location of ancestral and Evolutionarily New Centromeres. However, the BAC-FISH data similar to other biomolecular methods used up to now could not resolve the phylogenetic tree of hylobatids. These difficulties may be explained by the rapid divergence of crown hylobatids, reticulate evolution and incomplete lineage sorting. The lack of significant cytogenetic landmarks at the nodes of the gibbon tree could indicate that chromosomal rearrangements did not play a primary role in hylobatid speciation.

Cytogenetic studies of small ape (Hylobatidae) chromosomes / Stanyon R. - In: CITOLOGIÂ. - ISSN 0041-3771. - STAMPA. - 55:(2013), pp. 167-171.

Cytogenetic studies of small ape (Hylobatidae) chromosomes.

STANYON, ROSCOE ROBERT
2013

Abstract

Each genus of small apes has a highly distinctive karyotype (karyomorph) at every level of cytogenetic analysis. Early workers using classical staining and banding had problems integrating the karyolocial data with that of other primates. Chromosome painting allowed syntenic homology maps to be constructed for each of the four karyomorphs (2n = 38, 44, 50 and 52). They revealed that the great apes and Old World monkeys had strongly conserved karyotypes while those of small apes were highly rearranged. However, they provided contradictory phylogenetic results to other bio-molecular tree of small ape evolution. More recently BAC-FISH investigations using a panel of about 900 BACs defined each breakpoint by spanning or flanking BAC clones The syntenic map was refined and now includes small segments of homology which had previously gone undected, marker order (synteny block orientation) and the location of ancestral and Evolutionarily New Centromeres. However, the BAC-FISH data similar to other biomolecular methods used up to now could not resolve the phylogenetic tree of hylobatids. These difficulties may be explained by the rapid divergence of crown hylobatids, reticulate evolution and incomplete lineage sorting. The lack of significant cytogenetic landmarks at the nodes of the gibbon tree could indicate that chromosomal rearrangements did not play a primary role in hylobatid speciation.
2013
55
167
171
Stanyon R
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/820272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact