In multilevel models for binary responses, estimation is computationally challenging due to the need to evaluate intractable integrals. In this paper, we investigate the performance of a recently proposed Bayesian method for deterministic fast approximate inference, called Integrated Nested Laplace Approximation (INLA). In particular, we conducted a simulation study, comparing the results obtained via INLA with the results obtained via MCMC, i.e. the traditional estimation method in the Bayesian context, and via maximum likelihood with adaptive quadrature. Particular attention is devoted to the case of small sample size and to the specification of the prior distribution for the variance.
Bayesian estimation with INLA for logistic multilevel models / Metelli S.; Grilli L.; Rampichini C.. - STAMPA. - (2013), pp. 693-696. (Intervento presentato al convegno 28th International Workshop on Statistical Modelling tenutosi a Palermo nel 8-12 luglio 2013).
Bayesian estimation with INLA for logistic multilevel models
GRILLI, LEONARDO;RAMPICHINI, CARLA
2013
Abstract
In multilevel models for binary responses, estimation is computationally challenging due to the need to evaluate intractable integrals. In this paper, we investigate the performance of a recently proposed Bayesian method for deterministic fast approximate inference, called Integrated Nested Laplace Approximation (INLA). In particular, we conducted a simulation study, comparing the results obtained via INLA with the results obtained via MCMC, i.e. the traditional estimation method in the Bayesian context, and via maximum likelihood with adaptive quadrature. Particular attention is devoted to the case of small sample size and to the specification of the prior distribution for the variance.File | Dimensione | Formato | |
---|---|---|---|
Metelli Grilli Rampichini IWSM2013 printed.pdf
Accesso chiuso
Tipologia:
Altro
Licenza:
Tutti i diritti riservati
Dimensione
497.98 kB
Formato
Adobe PDF
|
497.98 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.