A large latent factor model, in which the volatilities of common and idiosyncratic factors are conditionally heteroskedastic, is considered. We investigate the performance of computationally simple indirect estimators based on auxiliary models that do not require the Kalman filter implementation.

Fast indirect estimation of latent factor models with conditional heteroskedasticity / Gian Piero Aielli; Giorgio Calzolari; Gabriele Fiorentini. - ELETTRONICO. - (2013), pp. 1-5. (Intervento presentato al convegno Advances in Latent Variables - Methods, Models and Applications tenutosi a Brescia - Department of Economics and Management nel June 19-21, 2013).

Fast indirect estimation of latent factor models with conditional heteroskedasticity

CALZOLARI, GIORGIO;FIORENTINI, GABRIELE
2013

Abstract

A large latent factor model, in which the volatilities of common and idiosyncratic factors are conditionally heteroskedastic, is considered. We investigate the performance of computationally simple indirect estimators based on auxiliary models that do not require the Kalman filter implementation.
2013
Advances in Latent Variables
Advances in Latent Variables - Methods, Models and Applications
Brescia - Department of Economics and Management
June 19-21, 2013
Goal 4: Quality education
Gian Piero Aielli; Giorgio Calzolari; Gabriele Fiorentini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/824673
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact