Several evidences indicate that increased cardiac mitochondrial monoamine oxidase type A (MAO-A) activity associates with a failing phenotype. Till now, the mechanism underlying such relation is largely unknown. We explored the hypothesis that exposure of cardiomyocytes to AT-II caused activation of MAO-A and also of catalase and aldehyde dehydrogenase activities, enzymes involved in degrading MAO's end products. Left ventricular cardiomyocytes were isolated from normoglycemic (N) and streptozotocin-injected (50 mg/kg) rats (D) treated or not treated with losartan (20 mg/kg/day in drinking water; DLos and NLos, respectively), a type 1 receptor (AT1) antagonist, for 3 weeks. In each group of cells, MAO, catalase and aldehyde dehydrogenase activities were measured radiochemically and spectrophotometrically. The same enzymes were also measured in HL-1 immortalized cardiomyocytes not exposed and exposed to AT-II (100 nM for 18 h) in the absence and in the presence of irbesartan (1 μM), an AT1 antagonist. MAO-A catalase and aldehyde dehydrogenase activities were found significantly higher in D, than in N cells. MAO-A positively correlated with catalase activity in D cells. MAO-A and aldehyde dehydrogenase but not catalase over-activation, were prevented in DLos cells. Similarly, MAO-A activity, but not catalase and aldehyde dehydrogenase increased significantly in HL-1 cells acutely exposed to AT-II and this increase was prevented when irbesartan, an AT1 antagonist was present. Over-activation of cardiomyocyte MAO-A activity is among acute (18 h) and short-term (2-weeks of diabetes) cardiac effects of AT-II and a novel target of AT1 antagonists, first line treatments of diabetic cardiomyopathy.

Exposure of cardiomyocytes to angiotensin II induces over-activation of monoamine oxidase type A: implications in heart failure / Manni ME; Zazzeri M; Musilli C; Bigagli E; Lodovici M; Raimondi L. - In: EUROPEAN JOURNAL OF PHARMACOLOGY. - ISSN 0014-2999. - ELETTRONICO. - 718:(2013), pp. 271-276. [10.1016/j.ejphar.2013.08.022]

Exposure of cardiomyocytes to angiotensin II induces over-activation of monoamine oxidase type A: implications in heart failure

MANNI, MARIA ELENA;MUSILLI, CLAUDIA;BIGAGLI, ELISABETTA;LODOVICI, MAURA;RAIMONDI, LAURA
2013

Abstract

Several evidences indicate that increased cardiac mitochondrial monoamine oxidase type A (MAO-A) activity associates with a failing phenotype. Till now, the mechanism underlying such relation is largely unknown. We explored the hypothesis that exposure of cardiomyocytes to AT-II caused activation of MAO-A and also of catalase and aldehyde dehydrogenase activities, enzymes involved in degrading MAO's end products. Left ventricular cardiomyocytes were isolated from normoglycemic (N) and streptozotocin-injected (50 mg/kg) rats (D) treated or not treated with losartan (20 mg/kg/day in drinking water; DLos and NLos, respectively), a type 1 receptor (AT1) antagonist, for 3 weeks. In each group of cells, MAO, catalase and aldehyde dehydrogenase activities were measured radiochemically and spectrophotometrically. The same enzymes were also measured in HL-1 immortalized cardiomyocytes not exposed and exposed to AT-II (100 nM for 18 h) in the absence and in the presence of irbesartan (1 μM), an AT1 antagonist. MAO-A catalase and aldehyde dehydrogenase activities were found significantly higher in D, than in N cells. MAO-A positively correlated with catalase activity in D cells. MAO-A and aldehyde dehydrogenase but not catalase over-activation, were prevented in DLos cells. Similarly, MAO-A activity, but not catalase and aldehyde dehydrogenase increased significantly in HL-1 cells acutely exposed to AT-II and this increase was prevented when irbesartan, an AT1 antagonist was present. Over-activation of cardiomyocyte MAO-A activity is among acute (18 h) and short-term (2-weeks of diabetes) cardiac effects of AT-II and a novel target of AT1 antagonists, first line treatments of diabetic cardiomyopathy.
2013
718
271
276
Manni ME; Zazzeri M; Musilli C; Bigagli E; Lodovici M; Raimondi L
File in questo prodotto:
File Dimensione Formato  
european.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 604.7 kB
Formato Adobe PDF
604.7 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/842697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact