In this paper we derive a semiclassical hydrodynamic system for electron densities and currents in the two energy bands of a semiconductor. We use the semiclassical Wigner equation with a k p Hamiltonian and a BGK dissipative term to construct the rst two moment equations. The closure of the moment system is obtained using the Maximum Entropy Principle, by minimizing a Gibbs free-energy functional under suitable constraints. We prove that the constraint equations can be uniquely solved, i.e. that the local equilibrium state can be parametrized by the density and velocity eld. Some BGK-like models are proposed to mimic the quantum interband migration.

Semiclassical hydrodynamics of a quantum Kane model for semiconductors / L. Barletti; G. Borgioli; G. Frosali. - In: TRUDY INSTITUTA MATEMATIKI. - ISSN 1812-5093. - STAMPA. - 11(1):(2014), pp. 11-29.

Semiclassical hydrodynamics of a quantum Kane model for semiconductors

BARLETTI, LUIGI;BORGIOLI, GIOVANNI;FROSALI, GIOVANNI
2014

Abstract

In this paper we derive a semiclassical hydrodynamic system for electron densities and currents in the two energy bands of a semiconductor. We use the semiclassical Wigner equation with a k p Hamiltonian and a BGK dissipative term to construct the rst two moment equations. The closure of the moment system is obtained using the Maximum Entropy Principle, by minimizing a Gibbs free-energy functional under suitable constraints. We prove that the constraint equations can be uniquely solved, i.e. that the local equilibrium state can be parametrized by the density and velocity eld. Some BGK-like models are proposed to mimic the quantum interband migration.
2014
11(1)
11
29
L. Barletti; G. Borgioli; G. Frosali
File in questo prodotto:
File Dimensione Formato  
barborfro_9-1.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 395.86 kB
Formato Adobe PDF
395.86 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/849908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact