Blowout jets constitute about 50% of the total number of X-ray jets observed in polar coronal holes. In these events, the base magnetic loop is supposed to blow open in what is a scaled-down representation of two-ribbon flares that accompany major coronal mass ejections (CMEs): indeed, miniature CMEs resulting from blowout jets have been observed. This raises the question of the possible contribution of this class of events to the solar wind mass and energy flux. Here we make a first crude evaluation of the mass contributed to the wind and of the energy budget of the jets and related miniature CMEs, under the assumption that small-scale events behave as their large-scale analogs. This hypothesis allows us to adopt the same relationship between jets and miniature-CME parameters that have been shown to hold in the larger-scale events, thus inferring the values of the mass and kinetic energy of the miniature CMEs, currently not available from observations. We conclude our work estimating the mass flux and the energy budget of a blowout jet, and giving a crude evaluation of the role possibly played by these events in supplying the mass and energy that feeds the solar wind.

The contribution of X-ray polar blowout jets to the solar wind mass and energy / G. Poletto;A. C. Sterling;S. Pucci;M. Romoli. - STAMPA. - 300:(2014), pp. 239-242. (Intervento presentato al convegno Nature of Prominences and their role in Space Weather) [10.1017/S1743921313011046].

The contribution of X-ray polar blowout jets to the solar wind mass and energy

POLETTO, GIANNINA;PUCCI, STEFANO;ROMOLI, MARCO
2014

Abstract

Blowout jets constitute about 50% of the total number of X-ray jets observed in polar coronal holes. In these events, the base magnetic loop is supposed to blow open in what is a scaled-down representation of two-ribbon flares that accompany major coronal mass ejections (CMEs): indeed, miniature CMEs resulting from blowout jets have been observed. This raises the question of the possible contribution of this class of events to the solar wind mass and energy flux. Here we make a first crude evaluation of the mass contributed to the wind and of the energy budget of the jets and related miniature CMEs, under the assumption that small-scale events behave as their large-scale analogs. This hypothesis allows us to adopt the same relationship between jets and miniature-CME parameters that have been shown to hold in the larger-scale events, thus inferring the values of the mass and kinetic energy of the miniature CMEs, currently not available from observations. We conclude our work estimating the mass flux and the energy budget of a blowout jet, and giving a crude evaluation of the role possibly played by these events in supplying the mass and energy that feeds the solar wind.
2014
IAU Symposium
Nature of Prominences and their role in Space Weather
G. Poletto;A. C. Sterling;S. Pucci;M. Romoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/864296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact