We introduce a semi-parametric approach to ecological regression for disease mapping, based on modelling the regression M-quantiles of a Negative Binomial variable. The proposed method is robust to outliers in the model covariates, including those due to measurement error, and can account for both spatial heterogeneity and spatial clustering. A simulation experiment based on the well-known Scottish lip cancer data set is used to compare the M-quantile modelling approach with a random effects modelling approach for disease mapping. This suggests that the M-quantile approach leads to predicted relative risks with smaller root mean square error. The paper concludes with an illustrative application of the M-quantile approach, mapping low birth weight incidence data for English Local Authority Districts for the years 2005-2010.

Disease Mapping via Negative Binomial Regression M-quantiles / R. Chambers; E. Dreassi; N. Salvati. - In: STATISTICS IN MEDICINE. - ISSN 0277-6715. - STAMPA. - 33:(2014), pp. 4805-4824. [10.1002/sim.6256]

Disease Mapping via Negative Binomial Regression M-quantiles

DREASSI, EMANUELA;
2014

Abstract

We introduce a semi-parametric approach to ecological regression for disease mapping, based on modelling the regression M-quantiles of a Negative Binomial variable. The proposed method is robust to outliers in the model covariates, including those due to measurement error, and can account for both spatial heterogeneity and spatial clustering. A simulation experiment based on the well-known Scottish lip cancer data set is used to compare the M-quantile modelling approach with a random effects modelling approach for disease mapping. This suggests that the M-quantile approach leads to predicted relative risks with smaller root mean square error. The paper concludes with an illustrative application of the M-quantile approach, mapping low birth weight incidence data for English Local Authority Districts for the years 2005-2010.
2014
33
4805
4824
R. Chambers; E. Dreassi; N. Salvati
File in questo prodotto:
File Dimensione Formato  
articolo_sim_2.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/864694
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact