Transport properties play a crucial role in several fields of science, as biology, chemistry, sociology, information science, and physics. The behavior of many dynamical processes running over complex networks is known to be closely related to the geometry of the underlying topology, but this connection becomes even harder to understand when quantum effects come into play. Here, we exploit the Kossakoski-Lindblad formalism of quantum stochastic walks to investigate the capability to quickly and robustly transmit energy (or information) between two distant points in very large complex structures, remarkably assisted by external noise and quantum features as coherence. An optimal mixing of classical and quantum transport is, very surprisingly, quite universal for a large class of complex networks. This widespread behaviour turns out to be also extremely robust with respect to geometry changes. These results might pave the way for designing optimal bio-inspired geometries of efficient transport nanostructures that can be used for solar energy and also quantum information and communication technologies.

Universally optimal noisy quantum walks on complex networks / F. Caruso. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - ELETTRONICO. - 16:(2014), pp. 055015-1-055015-17. [10.1088/1367-2630/16/5/055015]

Universally optimal noisy quantum walks on complex networks

CARUSO, FILIPPO
2014

Abstract

Transport properties play a crucial role in several fields of science, as biology, chemistry, sociology, information science, and physics. The behavior of many dynamical processes running over complex networks is known to be closely related to the geometry of the underlying topology, but this connection becomes even harder to understand when quantum effects come into play. Here, we exploit the Kossakoski-Lindblad formalism of quantum stochastic walks to investigate the capability to quickly and robustly transmit energy (or information) between two distant points in very large complex structures, remarkably assisted by external noise and quantum features as coherence. An optimal mixing of classical and quantum transport is, very surprisingly, quite universal for a large class of complex networks. This widespread behaviour turns out to be also extremely robust with respect to geometry changes. These results might pave the way for designing optimal bio-inspired geometries of efficient transport nanostructures that can be used for solar energy and also quantum information and communication technologies.
2014
16
055015-1
055015-17
F. Caruso
File in questo prodotto:
File Dimensione Formato  
1367-2630_16_5_055015.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/868922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
social impact