During contextual fear conditioning a rat learns a temporal contiguity association between the exposition to a previously neutral context (CS) and an aversive unconditioned stimulus (US) as a footshock. This condition determines in the rat the freezing reaction during the subsequent re-exposition to the context. Potentially the re-exposition without US presentation initiates two opposing and competing processes: reconsolidation and extinction. Reconsolidation process re-stabilizes and strengthens the original memory and it is initiated by a brief re-exposure to context. Instead the extinction process leads to the decrease of the expression of the original memory and it is triggered by prolonged re-exposure to the context. Here we analyzed the entorhinal cortex (ENT) participation in contextual fear conditioning reconsolidation and extinction. The rats were trained in contextual fear conditioning and 24 h later they were subjected either to a brief (2 min) reactivation session or to a prolonged (120 min) re-exposition to context to induce extinction of the contextual fear memory. Immediately after the reactivation or the extinction session, the animals were submitted to bilateral ENT TTX inactivation. Memory retention was assessed as conditioned freezing duration measured 72 h after TTX administration. The results showed that ENT inactivation both after reactivation and extinction session was followed by contextual freezing retention impairment. Thus, the present findings point out that ENT is involved in contextual fear memory reconsolidation and extinction. This neural structure might be part of parallel circuits underlying two phases of contextual fear memory processing.

Entorhinal cortex contribution to contextual fear conditioning extinction and reconsolidation in rats / Baldi E.; C. Bucherelli. - In: NEUROBIOLOGY OF LEARNING AND MEMORY. - ISSN 1074-7427. - STAMPA. - 110:(2014), pp. 64-71.

Entorhinal cortex contribution to contextual fear conditioning extinction and reconsolidation in rats

BALDI, ELISABETTA;BUCHERELLI, CORRADO
2014

Abstract

During contextual fear conditioning a rat learns a temporal contiguity association between the exposition to a previously neutral context (CS) and an aversive unconditioned stimulus (US) as a footshock. This condition determines in the rat the freezing reaction during the subsequent re-exposition to the context. Potentially the re-exposition without US presentation initiates two opposing and competing processes: reconsolidation and extinction. Reconsolidation process re-stabilizes and strengthens the original memory and it is initiated by a brief re-exposure to context. Instead the extinction process leads to the decrease of the expression of the original memory and it is triggered by prolonged re-exposure to the context. Here we analyzed the entorhinal cortex (ENT) participation in contextual fear conditioning reconsolidation and extinction. The rats were trained in contextual fear conditioning and 24 h later they were subjected either to a brief (2 min) reactivation session or to a prolonged (120 min) re-exposition to context to induce extinction of the contextual fear memory. Immediately after the reactivation or the extinction session, the animals were submitted to bilateral ENT TTX inactivation. Memory retention was assessed as conditioned freezing duration measured 72 h after TTX administration. The results showed that ENT inactivation both after reactivation and extinction session was followed by contextual freezing retention impairment. Thus, the present findings point out that ENT is involved in contextual fear memory reconsolidation and extinction. This neural structure might be part of parallel circuits underlying two phases of contextual fear memory processing.
2014
110
64
71
Baldi E.; C. Bucherelli
File in questo prodotto:
File Dimensione Formato  
NLM14.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 825.11 kB
Formato Adobe PDF
825.11 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/871119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact